Learn R Programming

degreenet (version 1.2)

bsyule: Calculate Bootstrap Estimates and Confidence Intervals for the Yule Distribution

Description

Uses the parametric bootstrap to estimate the bias and confidence interval of the MLE of the Yule Distribution.

Usage

bsyule(x, cutoff=1, m=200, np=1, alpha=0.95, v=NULL,
                   hellinger=FALSE, cutabove=1000)
bootstrapyule(x,cutoff=1,cutabove=1000,
                          m=200,alpha=0.95,guess=3.31,hellinger=FALSE,
                          mle.meth="ayulemle")

Arguments

x
A vector of counts (one per observation).
cutoff
Calculate estimates conditional on exceeding this value.
m
Number of bootstrap samples to draw.
np
Number of parameters in the model (1 by default).
alpha
Type I error for the confidence interval.
v
Parameter value to use for the bootstrap distribution. By default it is the MLE of the data.
hellinger
Minimize Hellinger distance of the parametric model from the data instead of maximizing the likelihood.
cutabove
Calculate estimates conditional on not exceeding this value.
guess
Initial estimate at the MLE.
mle.meth
Method to use to compute the MLE.

Value

  • distmatrix of sample CDFs, one per row.
  • obsmleThe Yule MLE of the PDF exponent.
  • bsmlesVector of bootstrap MLE.
  • quantilesQuantiles of the bootstrap MLEs.
  • pvaluep-value of the Anderson-Darling statistics relative to the bootstrap MLEs.
  • obsmandsObserved Anderson-Darling Statistic.
  • meanmlesMean of the bootstrap MLEs.

References

Jones, J. H. and Handcock, M. S. "An assessment of preferential attachment as a mechanism for human sexual network formation," Proceedings of the Royal Society, B, 2003, 270, 1123-1128.

See Also

ayulemle, simyule, llyule

Examples

Run this code
# Now, simulate a Yule distribution over 100
# observations with rho=4.0

set.seed(1)
s4 <- simyule(n=100, rho=4)
table(s4)

#
# Calculate the MLE and an asymptotic confidence
# interval for rho
#

s4est <- ayulemle(s4)
s4est

#
# Use the bootstrap to compute a confidence interval rather than using the 
# asymptotic confidence interval for rho.
#

bsyule(s4, m=20)

Run the code above in your browser using DataLab