Last chance! 50% off unlimited learning
Sale ends in
Functions to Estimate the Log-likelihood for Discrete Probability Distributions Based on Categorical Response.
llgyuleall(v, x, cutoff = 2, cutabove = 1000, np=1)
the log-likelihood for the data x
at parameter value v
.
A vector of parameters for the Yule (a 1-vector - the scaling exponent).
A vector of categories for counts (one per observation). The values of x
and the categories are: 0=0, 1=1, 2=2, 3=3, 4=4, 5=5-10, 6=11-20, 7=21-100, 8=>100
Calculate estimates conditional on exceeding this value.
Calculate estimates conditional on not exceeding this value.
wnumber of parameters in the model. For the Yule this is 1.
Jones, J. H. and Handcock, M. S. "An assessment of preferential attachment as a mechanism for human sexual network formation," Proceedings of the Royal Society, B, 2003, 270, 1123-1128.
gyulemle, llgyule, dyule, llgwarall
#
# Simulate a Yule distribution over 100
# observations with rho=4.0
#
set.seed(1)
s4 <- simyule(n=100, rho=4)
table(s4)
#
# Recode it as categorical
#
s4[s4 > 4 & s4 < 11] <- 5
s4[s4 > 100] <- 8
s4[s4 > 20] <- 7
s4[s4 > 10] <- 6
#
# Calculate the MLE and an asymptotic confidence
# interval for rho
#
s4est <- gyulemle(s4)
s4est
# Calculate the MLE and an asymptotic confidence
# interval for rho under the Waring model (i.e., rho=4, p=2/3)
#
s4warest <- gwarmle(s4)
s4warest
#
# Compare the AICC and BIC for the two models
#
llgyuleall(v=s4est$theta,x=s4)
llgwarall(v=s4warest$theta,x=s4)
Run the code above in your browser using DataLab