Learn R Programming

delt (version 0.8.2)

eval.bagg: Returns a bootstrap aggregation of adaptive histograms

Description

Returns a bootstrap aggregation of CART-histograms or greedy histograms.

Usage

eval.bagg(dendat, B, leaf, minobs = NULL, seed = 1, sample = "bagg", prune = "off", splitscan = 0, seedf = 1, scatter = 0, src = "c", method = "loglik")

Arguments

dendat
n*d data matrix
B
positive integer; the number of aggregated histograms
leaf
the cardinality of the partitions of the aggregated histograms
minobs
non-negative integer; a property of aggregated histograms; splitting of a bin will be continued if the bin containes "minobs" or more observations
seed
the seed for the random number generation of the random selection of the bootstrap sample
sample
"bagg" or "worpl"; the bootstrapping method; "worpl" for the n/2-out-of-n without replacement; "bagg" for n-out-of-n with replacement
prune
"on" or "off"; if "on", then CART-histograms will be aggregated; if "off", then greedy histograms will be aggregated
splitscan
internal (how many splits will be used for random split selection)
seedf
internal (seed for random split selection)
scatter
internal (random perturbation of observations)
src
internal ("c" or "R" code)
method
"loglik" or "projec"; the empirical risk is either the log-likelihood or the L2 empirical risk

Value

An evaluation tree

See Also

lstseq.bagg, eval.cart, eval.greedy

Examples

Run this code
library(denpro)
dendat<-sim.data(n=600,seed=5,type="mulmodII")

leaf<-7     # number of leaves in the histograms
seed<-1     # seed for choosing bootstrap samples
sample="worpl" # without-replacement bootstrap
prune="on"  # we use CART-histograms
B<-5        # the number of histograms in the average

eva<-eval.bagg(dendat,B,leaf,seed=seed,sample=sample,prune=prune)

dp<-draw.pcf(eva,pnum=c(60,60))
persp(dp$x,dp$y,dp$z,theta=-20,phi=30)

Run the code above in your browser using DataLab