### Contour plot of a logistic model for two parameters K and b
### using data collected from growth of yeast population
# Define the solution to the differential equation with
# parameters K and b Gause model equation
gause_model <- volume ~ K / (1 + exp(log(K / 0.45 - 1) - b * time))
# Identify the ranges of the parameters that we wish to investigate
kParam <- seq(5, 20, length.out = 100)
bParam <- seq(0, 1, length.out = 100)
# Allow for all the possible combinations of parameters
gause_parameters <- expand.grid(K = kParam, b = bParam)
# Now compute the likelihood
gause_likelihood <- compute_likelihood( model = gause_model,
data = yeast,
parameters = gause_parameters,
logLikely = FALSE
)
Run the code above in your browser using DataLab