Learn R Programming

demogR (version 0.6.0)

stoch.sens: stoch.sens

Description

Calculates the sensitivity of the stochastic growth rate to perturbations in the mean demographic projection matrix.

Usage

stoch.sens(env, amat, k)

Arguments

env

environmental sequence

amat

matrices describing the population dynamics in the different environmental states, organized as columns of a matrix

k

rank of the projection matrices

Value

A list with two elements:

sensitivities

sensitivities of the stochastic growth rate

elasticities

elasticities of the stochastic growth rate

Details

See Caswell (2001, section 14.4) for details.

References

Caswell, H. 2001. Matrix population models: Construction, analysis, and interpretation. 2nd ed. Sunderland, MA: Sinauer.

Haridas, C. V., and S. Tuljapurkar. 2005. Elasticities in variable environments: Properties and implications. American Naturalist 166 (4):481-495.

Tuljapurkar, S. 1990. Population dynamics in variable environments. Vol. 85, Lecture notes in biomathematics. Berlin: Springer-Veralg.

Tuljapurkar, S., and C. V. Haridas. 2006. Temporal autocorrelation and stochastic population growth. Ecology Letters 9 (3):324-334.

See Also

lams, eigen.analysis

Examples

Run this code
# NOT RUN {
## Simulate an i.i.d. sequence of 3 environmental states

env <- floor(runif(100,0,3))+1
px1 <- rbeta(4,9.5,0.5)
px2 <- rbeta(4,7.5,2.5)
px3 <- rbeta(4,5,5)
mx <- c(0,rgamma(4,5,10))

A1 <- odiag(px1,-1)
A2 <- odiag(px2,-1)
A3 <- odiag(px3,-1)
A1[1,] <- leslie.row1(mx,px1)
A2[1,] <- leslie.row1(mx,px2)
A3[1,] <- leslie.row1(mx,px3)
amat <- cbind(matrix(A1,nr=25), matrix(A2,nr=25), matrix(A3,nr=25))
stoch.sens(env,amat,k=5)

# }

Run the code above in your browser using DataLab