lca
produces a standard Lee-Carter model by default, although many
other options are available. bms is a wrapper for
lca and returns a model based on the
Booth-Maindonald-Smith methodology.lca(data, series=names(data$rate)[1], years=data$year, ages=data$age, max.age=100, adjust = c("dt", "dxt", "e0", "none"), chooseperiod=FALSE, minperiod=20, breakmethod=c("bai","bms"), scale = FALSE, restype = c("logrates", "rates", "deaths"), interpolate = FALSE)
bms(data, series=names(data$rate)[1], years=data$year, ages=data$age, max.age=100, minperiod = 20, breakmethod = c("bms", "bai"), scale = FALSE, restype = c("logrates", "rates", "deaths"), interpolate = FALSE)max.age.bms() and dt for lca().breakpoints in the strucchange package)
and bms (method based on mean deviance ratios described in BMS).
data object.data object.data. It takes the name given by the series argument.data$rate. Each row is one age group
(assumed to be single years). Each column is one year. The
function produces a model for the series mortality or fertility rate matrix
within data$rate. Forecasts from this model can be obtained using forecast.lca.Lee, R.D., and Carter, L.R. (1992) Modeling and forecasting US mortality. Journal of the American Statistical Association, 87, 659-671.
forecast.lca, fdm## Not run:
# france.LC1 <- lca(fr.mort,adjust="e0")
# plot(france.LC1)
# par(mfrow=c(1,2))
# plot(fr.mort,years=1953:2002,ylim=c(-11,1))
# plot(forecast(france.LC1,jumpchoice="actual"),ylim=c(-11,1))
#
# france.bms <- bms(fr.mort,breakmethod="bai")
# fcast.bms <- forecast(france.bms)
# par(mfrow=c(1,1))
# plot(fcast.bms$kt)
# ## End(Not run)Run the code above in your browser using DataLab