Learn R Programming

demography (version 1.18)

pop.sim: Population simulation

Description

Simulate future sample paths of a population using functional models for mortality, fertility and migration.

Usage

pop.sim(mort, fert=NULL, mig=NULL, firstyearpop, N=100, mfratio=1.05, bootstrap=FALSE)

Arguments

mort
Forecasts of class fmforecast2 for mortality.
fert
Forecasts of class fmforecast for female fertility.
mig
Forecasts of class fmforecast2 for net migration.
firstyearpop
Population for first year of simulation.
N
Number of sample paths to simulate.
mfratio
Male-female ratio used in distributing births.
bootstrap
If TRUE, simulation uses resampled errors rather than normally distributed errors.

Value

The arrays are of dimension (p,h,N) where p is the number of age groups, h is the forecast horizon and N is the number of simulated sample paths.

See Also

simulate.fmforecast, simulate.fmforecast2.

Examples

Run this code
## Not run: 
# require(addb)
# # Construct data objects
# mort.sm <- smooth.demogdata(set.upperage(extract.years(australia,1950:2002),100))
# fert.sm <- smooth.demogdata(extract.years(aus.fertility,1950:2002))
# aus.mig <- netmigration(set.upperage(australia,100),aus.fertility,mfratio=1.0545)
# # Fit models
# mort.fit <- coherentfdm(mort.sm)
# fert.fit <- fdm(fert.sm)
# mig.fit <- coherentfdm(aus.mig)
# # Produce forecasts
# mort.fcast <- forecast(mort.fit)
# fert.fcast <- forecast(fert.fit)
# mig.fcast <- forecast(mig.fit)
# # Simulate
# aus.sim <- pop.sim(mort.fcast,fert.fcast,mig.fcast,australia)## End(Not run)

Run the code above in your browser using DataLab