# NOT RUN {
# An example with default settings of machine learning algorithms
experiment_1 <- compare_methods(formula = MVA~.,
dataset = example_dataset_1, k = 10, repeats = 10, blocked_CV = TRUE,
PCA_transformation = FALSE, components_selection = "automatic",
optimize = TRUE, methods = c("MLR", "BRNN"), tuning_metric = "RSquared")
experiment_1$mean_std
experiment_1$ranks
experiment_1$bias_cal
experiment_1$bias_val
experiment_1$transfer_functions
experiment_1$transfer_functions_together
experiment_1$PCA_output
experiment_1$parameter_values
experiment_1$transfer_functions
experiment_2 <- compare_methods(formula = MVA ~ T_APR,
dataset = example_dataset_1, k = 5, repeats = 10, BRNN_neurons = 1,
MT_M = 4, MT_N = FALSE, MT_U = FALSE, MT_R = FALSE, BMT_P = 100,
BMT_I = 100, BMT_M = 4, BMT_N = FALSE, BMT_U = FALSE, BMT_R = FALSE,
RF_P = 100, RF_I = 100, RF_depth = 0, seed_factor = 5)
experiment_2$mean_std
experiment_2$ranks
experiment_2$bias_cal
experiment_2$transfer_functions
experiment_2$transfer_functions_together
experiment_2$PCA_output
experiment_3 <- compare_methods(formula = MVA ~ .,
dataset = example_dataset_1, k = 2, repeats = 5,
methods = c("MLR", "BRNN", "MT", "BMT"),
optimize = TRUE, MLR_stepwise = TRUE)
experiment_3$mean_std
experiment_3$ranks
experiment_3$bias_val
experiment_3$transfer_functions
experiment_3$transfer_functions_together
experiment_3$parameter_values
library(dendroTools)
library(ggplot2)
data(dataset_TRW)
comparison_TRW <- compare_methods(formula = T_Jun_Jul ~ TRW, dataset = dataset_TRW,
k = 3, repeats = 10, optimize = TRUE, methods = c("MLR", "MT", "BMT", "BRNN"),
seed_factor = 5, dataset_complete = dataset_TRW_complete, MLR_stepwise = TRUE,
stepwise_direction = "backward")
comparison_TRW$mean_std
comparison_TRW$bias_val
comparison_TRW$transfer_functions + xlab(expression(paste('TRW'))) +
ylab("June-July Mean Temperature [<U+00C2><U+00B0>C]")
comparison_TRW$reconstructions
comparison_TRW$reconstructions_together
# }
Run the code above in your browser using DataLab