#----------------------------------------------------------------------------
# glm_nb() examples
#----------------------------------------------------------------------------
library(depower)
set.seed(1234)
d <- sim_nb(
n1 = 60,
n2 = 40,
mean1 = 10,
ratio = 1.5,
dispersion1 = 2,
dispersion2 = 8
)
lrt <- glm_nb(d, equal_dispersion = FALSE, test = "lrt", ci_level = 0.95)
lrt
wald <- glm_nb(d, equal_dispersion = FALSE, test = "wald", ci_level = 0.95)
wald
#----------------------------------------------------------------------------
# Compare results to manual calculation of chi-square statistic
#----------------------------------------------------------------------------
# Use the same data, but as a data frame instead of list
set.seed(1234)
d <- sim_nb(
n1 = 60,
n2 = 40,
mean1 = 10,
ratio = 1.5,
dispersion1 = 2,
dispersion2 = 8,
return_type = "data.frame"
)
mod_alt <- glmmTMB::glmmTMB(
formula = value ~ condition,
data = d,
dispformula = ~ condition,
family = glmmTMB::nbinom2,
)
mod_null <- glmmTMB::glmmTMB(
formula = value ~ 1,
data = d,
dispformula = ~ condition,
family = glmmTMB::nbinom2,
)
lrt_chisq <- as.numeric(-2 * (logLik(mod_null) - logLik(mod_alt)))
lrt_chisq
wald_chisq <- summary(mod_alt)$coefficients$cond["condition2", "z value"]^2
wald_chisq
anova(mod_null, mod_alt)
Run the code above in your browser using DataLab