#----------------------------------------------------------------------------
# plot() examples
#----------------------------------------------------------------------------
library(depower)
# Power for independent two-sample t-test
set.seed(1234)
sim_log_lognormal(
n1 = c(10, 15),
n2 = c(10, 15),
ratio = c(1.3, 1.5),
cv1 = c(0.3),
cv2 = c(0.3, 0.5),
nsims = 500
) |>
power(alpha = 0.05) |>
plot()
# Power for dependent two-sample t-test
set.seed(1234)
sim_log_lognormal(
n1 = c(10, 15),
n2 = c(10, 15),
ratio = c(1.3, 1.5),
cv1 = c(0.3, 0.5),
cv2 = c(0.3, 0.5),
cor = c(0.3),
nsims = 500
) |>
power(alpha = 0.01) |>
plot()
# Power for two-sample independent AND two-sample dependent t-test
set.seed(1234)
sim_log_lognormal(
n1 = c(10, 15),
n2 = c(10, 15),
ratio = c(1.3, 1.5),
cv1 = c(0.3),
cv2 = c(0.3),
cor = c(0, 0.3, 0.6),
nsims = 500
) |>
power(alpha = c(0.05, 0.01)) |>
plot(facet_row = "cor", color = "test")
# Power for one-sample t-test
set.seed(1234)
sim_log_lognormal(
n1 = c(10, 15),
ratio = c(1.2, 1.4),
cv1 = c(0.3, 0.5),
nsims = 500
) |>
power(alpha = c(0.05, 0.01)) |>
plot()
# \donttest{
# Power for independent two-sample NB test
set.seed(1234)
sim_nb(
n1 = c(10, 15),
mean1 = 10,
ratio = c(1.8, 2),
dispersion1 = 10,
dispersion2 = 3,
nsims = 100
) |>
power(alpha = 0.01) |>
plot()
# Power for BNB test
set.seed(1234)
sim_bnb(
n = c(10, 12),
mean1 = 10,
ratio = c(1.3, 1.5),
dispersion = 5,
nsims = 100
) |>
power(alpha = 0.01) |>
plot()
# }
Run the code above in your browser using DataLab