plot(eigenvalues(dm)[start:end], ...)plot.DiffusionMap(x, dims, new_dcs = NULL, col = NULL, col_by = NULL,
col_limits = NULL, col_new = "red", pal = NULL, ..., mar = NULL,
ticks = FALSE, axes = TRUE, box = FALSE, legend_main = col_by,
legend_opts = list(), interactive = FALSE,
draw_legend = !is.null(col_by) || (length(col) > 1 && !is.character(col)),
consec_col = TRUE, col_na = "grey", plot_more = function(p, ..., rescale
= NULL) NULL)# S4 method for DiffusionMap,numeric
plot(x, y, ...)
# S4 method for DiffusionMap,missing
plot(x, y, ...)
y and plotted. (default: no more points)('fg'))dataset(x) or phenoData(dataset(x)) column to use as colorcol is a continuous (=double) vector, this can be overridden to map the color range differently than from min to max (e.g. specify c(0, 1))new_dcs is given, it will take on this color. (default: red)col vector to colors. (default: use cube_helix for continuous and palette() for discrete data)interactive == TRUE)par(mar))ticks is TRUE)axes if specified)col_by is given)col_by is given or col is given and a vector to be mapped)col or col_by refers to an integer column, with gaps (e.g. c(5,0,0,3)) use the palette color consecutively (e.g. c(3,1,1,2))NA in the data. specify NA to hide.p argument is the rgl or scatterplot3d instance or NULL,
its rescale argument is NULL or of the shape list(from = c(a, b), to = c(c,d)))plot(dm, c(-1,2))), then the corresponding components will be flipped.data(guo)
plot(DiffusionMap(guo))
Run the code above in your browser using DataLab