Learn R Programming

detect (version 0.4-0)

databu: Simulated example for abundance model

Description

Simulated example for abundance model, see code below.

Usage

data(databu)

Arguments

Format

A data frame with 1000 observations on the following 11 variables.
N
true counts
Y
observed counts
x1
random variables used as covariates
x2
random variables used as covariates
x3
random variables used as covariates
x4
random variables used as covariates
x5
random variables used as covariates
x6
random variables used as covariates
p
probability of detection
lambda
mean of the linear predictor
A
occupancy
phi
zero inflation probabilities

Source

Simulated example.

Details

This simulated example corresponds to the Binomial - ZIP model implemented in the function svabu.

References

Solymos, P., Lele, S. R. and Bayne, E. 2012. Conditional likelihood approach for analyzing single visit abundance survey data in the presence of zero inflation and detection error. Environmetrics, 23, 197--205.

Examples

Run this code
data(databu)
str(databu)
## Not run: 
# ## simulation
# n <- 1000
# set.seed(1234)
# x1 <- runif(n,0,1)
# x2 <- rnorm(n,0,1)
# x3 <- runif(n,-1,1)
# x4 <- runif(n,-1,1)
# x5 <- rbinom(n,1,0.6)
# x6 <- rbinom(n,1,0.4)
# x7 <- rnorm(n,0,1)
# X <- model.matrix(~ x1 + x5)
# Z <- model.matrix(~ x2 + x5)
# Q <- model.matrix(~ x7)
# beta <- c(2,-0.8,0.5)
# theta <- c(1, 2, -0.5)
# phi <- 0.3
# p <- drop(binomial("logit")$linkinv(Z %*% theta))
# lambda <- drop(exp(X %*% beta))
# A <- rbinom(n, 1, 1-phi)
# N <- rpois(n, lambda * A)
# Y <- rbinom(n, N, p)
# databu <- data.frame(N=N, Y=Y, x1, x2, x3, x4, x5, x6, p=p, lambda=lambda, A, phi)
# ## End(Not run)

Run the code above in your browser using DataLab