data(datocc)
## MLE
m00 <- svocc(W ~ x1 | x1 + x3, datocc)
## PMLE
m01 <- svocc(W ~ x1 | x1 + x3, datocc, penalized=TRUE)
## print
m00
## summary
summary(m00)
## coefficients
coef(m00)
## state (occupancy) model estimates
coef(m00, "sta")
## detection model estimates
coef(m00, "det")
## compare estimates
cbind(truth=c(0.6, 0.5, 0.4, -0.5, 0.3),
mle=coef(m00), pmle=coef(m01))
## AIC, BIC
AIC(m00)
BIC(m00)
## log-likelihood
logLik(m00)
## variance-covariance matrix
vcov(m00)
vcov(m00, model="sta")
vcov(m00, model="det")
## confidence intervals
confint(m00)
confint(m00, model="sta")
confint(m00, model="det")
## fitted values
## (conditional probability of occurrence given detection history:
## if W=1, fitted=1,
## if W=0, fitted=(phi*(1-delta)) / ((1-delta) + phi * (1-delta))
summary(fitted(m00))
## estimated probabilities: (phi*(1-delta)) / ((1-delta) + phi * (1-delta))
summary(m00$estimated.probabilities)
## probability of occurrence (phi)
summary(m00$occurrence.probabilities)
## probability of detection (delta)
summary(m00$detection.probabilities)
## Not run:
# ## model selection
# m02 <- svocc(W ~ x1 | x3 + x4, datocc)
# m03 <- drop1(m02, model="det")
# ## dropping one term at a time, resulting change in AIC
# m03
# ## updating the model
# m04 <- update(m02, . ~ . | . - x4)
# m04
# ## automatic model selection
# ## part of the model (sta/det) must be specified
# m05 <- svocc.step(m02, model="det")
# summary(m05)
#
# ## nonparametric bootstrap
# m06 <- bootstrap(m01, B=25)
# attr(m06, "bootstrap")
# extractBOOT(m06)
# summary(m06, type="mle")
# summary(m06, type="pmle") ## no SEs! PMLE!!!
# summary(m06, type="boot")
# ## vcov
# #vcov(m06, type="mle") ## this does not work with PMLE
# vcov(m06, type="boot") ## this works
# ## confint
# confint(m06, type="boot") ## quantile based
#
# ## parametric bootstrap
# ## sthis is how observations are simulated
# head(simulate(m01, 5))
# m07 <- bootstrap(m01, B=25, type="param")
# extractBOOT(m07)
# summary(m07)
#
# data(oven)
# ovenc <- oven
# ovenc[, c(4:8,10:11)][] <- lapply(ovenc[, c(4:8,10:11)], scale)
# ovenc$count01 <- ifelse(ovenc$count > 0, 1, 0)
# moven <- svocc(count01 ~ pforest | julian + timeday, ovenc)
# summary(moven)
# drop1(moven, model="det")
# moven2 <- update(moven, . ~ . | . - timeday)
# summary(moven)
#
# BIC(moven, moven2)
# AUC(moven, moven2)
# rocplot(moven)
# rocplot(moven2, col=2, add=TRUE)
# ## End(Not run)
Run the code above in your browser using DataLab