Learn R Programming

dials

Overview

This package contains infrastructure to create and manage values of tuning parameters for the tidymodels packages. If you are looking for how to tune parameters in tidymodels, please look at the tune package and tidymodels.org.

The name reflects the idea that tuning predictive models can be like turning a set of dials on a complex machine under duress.

Installation

You can install the released version of dials from CRAN with:

install.packages("dials")

You can install the development version from Github with:

# install.packages("pak")
pak::pak("tidymodels/dials")

Contributing

Please note that the dials project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Copy Link

Version

Install

install.packages('dials')

Monthly Downloads

30,054

Version

1.4.1

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Hannah Frick

Last Published

July 29th, 2025

Functions in dials (1.4.1)

cost

Support vector machine parameters
encode_unit

Class for converting parameter values back and forth to the unit range
finalize

Functions to finalize data-specific parameter ranges
degree

Parameters for exponents
deg_free

Degrees of freedom (integer)
dials-package

dials: Tools for working with tuning parameters
grid_space_filling

Space-filling parameter grids
grid_max_entropy

Max-entropy and latin hypercube grids
neighbors

Number of neighbors
num_clusters

Number of Clusters
freq_cut

Near-zero variance parameters
dropout

Neural network parameters
max_tokens

Maximum number of retained tokens
extrapolation

Parameters for possible engine parameters for Cubist
min_dist

Parameter for the effective minimum distance between embedded points
grid_regular

Create grids of tuning parameters
max_num_terms

Parameters for possible engine parameters for earth models
max_times

Word frequencies for removal
dist_power

Minkowski distance parameter
mtry

Number of randomly sampled predictors
new-param

Tools for creating new parameter objects
over_ratio

Parameters for class-imbalance sampling
parameters

Information on tuning parameters within an object
learn_rate

Learning rate
min_unique

Number of unique values for pre-processing
num_breaks

Number of cut-points for binning
harmonic_frequency

Harmonic Frequency
initial_umap

Initialization method for UMAP
rbf_sigma

Kernel parameters
reexports

Objects exported from other packages
regularization_factor

Parameters for possible engine parameters for ranger
num_leaves

Possible engine parameters for lightbgm
parameters_constr

Construct a new parameter set object
token

Token types
regularization_method

Estimation methods for regularized models
threshold

General thresholding parameter
num_runs

Number of Computation Runs
mixture

Mixture of penalization terms
num_tokens

Parameter to determine number of tokens in ngram
prune_method

MARS pruning methods
max_nodes

Parameters for possible engine parameters for randomForest
mtry_prop

Proportion of Randomly Selected Predictors
prior_slab_dispersion

Bayesian PCA parameters
select_features

Parameter to enable feature selection
predictor_prop

Proportion of predictors
scheduler-param

Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models.
weight

Parameter for "double normalization" when creating token counts
momentum

Gradient descent momentum parameter
stop_iter

Early stopping parameter
range_limits

Limits for the range of predictions
penalty

Amount of regularization/penalization
num_comp

Number of new features
range_validate

Tools for working with parameter ranges
target_weight

Amount of supervision parameter
weight_func

Kernel functions for distance weighting
update.parameters

Update a single parameter in a parameter set
num_knots

Number of knots (integer)
num_hash

Text hashing parameters
type_sum.param

Succinct summary of parameter objects
shrinkage_correlation

Parameters for possible engine parameters for sda models
smoothness

Kernel Smoothness
value_validate

Tools for working with parameter values
survival_link

Survival Model Link Function
surv_dist

Parametric distributions for censored data
summary_stat

Rolling summary statistic for moving windows
validation_set_prop

Proportion of data used for validation
window_size

Parameter for the moving window size
unknown

Placeholder for unknown parameter values
weight_scheme

Term frequency weighting methods
trees

Parameter functions related to tree- and rule-based models.
vocabulary_size

Number of tokens in vocabulary
trim_amount

Amount of Trimming
scale_pos_weight

Parameters for possible engine parameters for xgboost
bart-param

Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models.
buffer

Buffer size
confidence_factor

Parameters for possible engine parameters for C5.0
adjust_deg_free

Parameters to adjust effective degrees of freedom
all_neighbors

Parameter to determine which neighbors to use
conditional_min_criterion

Parameters for possible engine parameters for partykit models
class_weights

Parameters for class weights for imbalanced problems
Laplace

Laplace correction parameter
activation

Activation functions between network layers
cal_method_class

Methods for model calibration