itemParEst
permits to get item parameter estimates of some pre-specified logistic IRT model, together with estimates of
the standard errors and the covariances between item parameters, if any. The output is ordered such that it can be directly used
with the methods of Lord (difLord
) and Raju (difRaju
) and Generalized Lord's (difGenLord
)
to detect differential item functioning.
The data
is a matrix whose rows correspond to the subjects and columns to the items.
Missing values are allowed but must be coded as NA
values. They are discarded for item parameter estimation.
If the model is not the 1PL model, or if engine
is equal to "ltm"
, the selected IRT model is fitted using marginal maximum likelihood
by means of the functions from the ltm
package (Rizopoulos, 2006). Otherwise, the 1PL model is fitted as a generalized
linear mixed model, by means of the glmer
function of the lme4
package (Bates and Maechler, 2009). With the "ltm"
engine, the
common discrimination parameter can be either fixed to a constant value using the discr
argument, or it can be estimated (though not returned)
by specifying discr
to NULL
. The default value of the common discrimination is 1.
The 3PL model can be fitted either unconstrained or by fixing the pseudo-guessing values. In the latter case the argument c
holds either a numeric vector of same length of the number of items, with one value per item pseudo-guessing parameter, or a single value which
is duplicated for all the items. If c
is different from NULL
then the 3PL model is always fitted (whatever the value of model
).
Each row of the output matrix corresponds to one item of the data
set; the number of columns depends on the fitted model. At most,
nine columns are produced, with the unconstrained 3PL model. The order of the columns is the following: first, the estimates of item discrimination
a, difficulty b and pseudo-guessing c; second, the corresponding standard errors se(a), se(b) and se(c);
finally, the covariances between the item parameters, cov(a,b), cov(a,c) and cov(b,c).
If the 2PL model is fitted, only five columns are displayed: a, b, se(a), se(b) and cov(a,b).
In case of the 1PL model, only b and se(b) are returned. If the constrained 3PL is considered, the output matrix holds six columns,
the first five being identical to those from the 2PL model, and the last one holds the fixed pseudo-guessing parameters.