Fits the 3PL model and returns related item parameter estimates.
itemPar3PL(data)A matrix with one row per item and nine columns. See Details.
numeric: the data matrix.
David Magis
Data science consultant at IQVIA Belux
Brussels, Belgium
Sebastien Beland
Faculte des sciences de l'education
Universite de Montreal (Canada)
sebastien.beland@umontreal.ca
Gilles Raiche
Universite du Quebec a Montreal
raiche.gilles@uqam.ca
itemPar3PL permits to get item parameter estimates from the 3PL model. The output is ordered such that it can be directly used
with the general itemParEst command, as well as the methods of Lord (difLord) and Raju (difRaju)
and Generalized Lord's (difGenLord) to detect differential item functioning.
The output consists of nine columns which are displayed in the following order. The first three columns hold the estimates of item discrimination a, difficulty b and pseudo-guessing c parameters. In the next three columns one can find the related standard errors se(a), se(b) and se(c). Eventually, the last three columns contain the covariances between item parameters, respectively cov(a,b), cov(a,c) and cov(b,c).
The data is a matrix whose rows correspond to the subjects and columns to the items.
Missing values are allowed but must be coded as NA values. They are discarded for item parameter estimation.
The 3PL model is fitted using marginal maximum likelihood by means of the functions from the ltm package (Rizopoulos, 2006).
Magis, D., Beland, S., Tuerlinckx, F. and De Boeck, P. (2010). A general framework and an R package for the detection of dichotomous differential item functioning. Behavior Research Methods, 42, 847-862. tools:::Rd_expr_doi("10.3758/BRM.42.3.847")
Rizopoulos, D. (2006). ltm: An R package for latent variable modelling and item response theory analyses. Journal of Statistical Software, 17, 1--25. tools:::Rd_expr_doi("10.18637/jss.v017.i05")
itemPar1PL, itemPar2PL, itemPar3PLconst, itemParEst, difLord, difRaju,
difGenLord
if (FALSE) {
# Loading of the verbal data
data(verbal)
# Getting item parameter estimates
itemPar3PL(verbal[,1:24])
}
Run the code above in your browser using DataLab