xdata <- matrix(rnorm(1000), ncol=100)
xpredictor <- sample(c("A","B","C","D"),100,replace=TRUE)
dObj <- difconet.run(xdata, xpredictor, metric = 4, num_perms = 10,
comparisons = list(c("A","D"), c("A","B"), c("B","D")),
perm_mode = "columns")
#Top highest metric in first comparison but showing correlations in only 3 stages
difconet.plot.gene.correlations(dObj, order(dObj$combstats[[1]][,"M4.dist"],
decreasing=TRUE)[1], type="s", stages=1:3)
#Bottom lowest metric in second comparison showing all stages
difconet.plot.gene.correlations(dObj, order(dObj$combstats[[2]][,"M4.dist"],
decreasing=TRUE)[1], type="d")
#Another specific gene (3), showing densities of correlations
difconet.plot.gene.correlations(dObj, 3, type="d")
Run the code above in your browser using DataLab