A class that implements the Bernstein mechanism (not iterated version) of
differential privacy, for privatizing release of real-valued functions on
\([0,1]^l\) based on arbitrary datasets. Approximates the target
on a lattice.
# S4 method for DPMechBernstein
show(object)# S4 method for DPMechBernstein,DPParamsEps
releaseResponse(mechanism,
privacyParams, X)
# S4 method for DPMechBernstein
sensitivityNorm(mechanism, X1, X2)
an instance of class DPMech
.
an object of class DPMechBernstein
.
an object of class DPParamsEps
.
a privacy-sensitive dataset, if using sensitivity sampler a: list, matrix, data frame, numeric/character vector.
a privacy-sensitive dataset.
a privacy-sensitive dataset.
list with slots per argument, actual privacy parameter and response:
mechanism response with length of target release:
privacyParams, sensitivity, latticeK, dims, target, response
.
scalar numeric norm of non-private target
on datasets.
The \(L_\infty\) of the functions on a lattice.
show
: automatically prints the object.
releaseResponse
: releases Bernstein mechanism responses.
sensitivityNorm
: measures target
sensitivity.
sensitivity
non-negative scalar numeric maximum absolute target
sensitivity maximized over the lattice. Defaults to Inf
for use
with sensitivitySampler()
.
target
might be a closure that takes arbitrary dataset and returns a real-valued function on \([0,1]^l\).
gammaSensitivity
NA_real_
if inactive, or scalar in [0,1)
indicating that responses must be RDP with specific confidence.
latticeK
positive scalar integer-valued numeric specifying the lattice
resolution. Defaults to (invalid) NA_integer_
.
dims
positive scalar integer-valued numeric specifying the dimension
of released function domain. Defaults to (invalid) NA_integer_
.
Francesco Ald<U+00E0> and Benjamin I. P. Rubinstein. "The Bernstein Mechanism: Function Release under Differential Privacy", in Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI'2017), pp. 1705-1711, Feb 2017.
# NOT RUN {
## See the bernstein vignette
# }
Run the code above in your browser using DataLab