Free Access Week - Data Engineering + BI
Data Engineering and BI courses are free this week!
Free Access Week - Jun 2-8

diggit (version 1.4.0)

conditional: Conditional analysis of CNVs

Description

This function performs the conditional analysis of fCNVs

Usage

conditional(x, ...)
"conditional"(x, pheno = "cond", group1, group2 = NULL, cnv = 0.2, mr = 0.01, mr.adjust = c("none", "fdr", "bonferroni"), modul = 0.01, modul.adjust = c("none", "fdr", "bonferroni"), fet.pval = 0.05, cores = 1, verbose = TRUE)

Arguments

x
Object of class diggit
...
Additional parameters to pass to the function
pheno
Character string indicating the feature for sample groups
group1
Character string indicating the treatment group
group2
Optional character string indicating the reference group
cnv
Single number or vector of two numbers indicating the thresholds for CNVs
mr
Either vector of character strings indicating the MR genes, or number indicating the corrected p-value threshold for selecting the MRs
mr.adjust
Character string indicating the multiple-hypothesis correction to apply to the MR p-values
modul
Number indicating the p-value threshold for a modulator to be considered associated with the MR activity
modul.adjust
Character string indicating the multiple-hypothesis correction to apply to the aQTL results
fet.pval
Number indicating the FET p-value threshold for the association between CNVs and sample groups
cores
Integer indicating the number of cores to use (1 for Windows-based systems)
verbose
Logical, whether progress should be reported

Value

Object of class diggit with conditional analysis results

Examples

Run this code
data(gbm.expression, package="diggitdata")
data(gbm.cnv, package="diggitdata")
data(gbm.aracne, package="diggitdata")
dobj <- diggitClass(expset=gbmExprs, cnv=gbmCNV, regulon=gbmTFregulon)
dobj <- fCNV(dobj)
dobj <- aqtl(dobj, mr=c("CEBPD", "STAT3"), fcnv.adjust="fdr", verbose=FALSE)
dobj <- conditional(dobj, pheno="subtype", group1="MES", group2="PN", mr="STAT3", verbose=FALSE)
dobj

Run the code above in your browser using DataLab