50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

diggit (version 1.4.0)

fCNV: Inference of functional CNVs

Description

This function infers functional CNVs by computing their association with gene expression

Usage

fCNV(x, ...)
"fCNV"(x, expset = NULL, cnv = NULL, method = c("spearman", "mi", "pearson", "kendall"), cores = 1, verbose = TRUE)
"fCNV"(x, cnv, method = c("spearman", "mi", "pearson", "kendall"), cores = 1, verbose = TRUE)
"fCNV"(x, cnv, method = c("spearman", "mi", "pearson", "kendall"), cores = 1, verbose = TRUE)
"fCNV"(x, cnv, method = c("spearman", "mi", "pearson", "kendall"), cores = 1, verbose = TRUE)

Arguments

x
Object of class diggit, expressionSet object or numeric matrix of expression data, with features in rows and samples in columns
...
Additional arguments
expset
Optional numeric matrix of expression data
cnv
Optional numeric matrix of CNVs
method
Character string indicating the method for computing the association between CNVs and expression
cores
Integer indicating the number of cores to use (1 for Windows-based systems)
verbose
Logical, whether to report analysis progress

Value

Objet of class diggit with updated fCNV slot

Examples

Run this code
data(gbm.expression, package="diggitdata")
data(gbm.cnv, package="diggitdata")
genes <- intersect(rownames(gbmExprs), rownames(gbmCNV))[1:100]
gbmCNV <- gbmCNV[match(genes, rownames(gbmCNV)), ]
dgo <- diggitClass(expset=gbmExprs, cnv=gbmCNV)

dgo <- fCNV(dgo)
dgo
diggitFcnv(dgo)[1:5]
dgo <- fCNV(gbmExprs, gbmCNV)
print(dgo)
diggitFcnv(dgo)[1:5]
dgo <- fCNV(exprs(gbmExprs), gbmCNV)
dgo
diggitFcnv(dgo)[1:5]
dgo <- fCNV(as.data.frame(exprs(gbmExprs)), gbmCNV)
dgo
diggitFcnv(dgo)[1:5]

Run the code above in your browser using DataLab