Learn R Programming

diggit (version 1.4.0)

marina: Inference of Master Regulators

Description

This function infers the master regulators for the transition between two phenotypes

Usage

marina(x, ...)
"marina"(x, y = NULL, mu = 0, regulon, per = 1000, cores = 1, verbose = TRUE)
"marina"(x, pheno = "cond", group1, group2 = NULL, mu = 0, regulon, per = 1000, cores = 1, verbose = TRUE)
"marina"(x, pheno, group1, group2 = NULL, mu = 0, regulon = NULL, per = 1000, cores = 1, verbose = TRUE)

Arguments

x
Object of class diggit, expressionSet object or numerical matrix containing the test samples
...
Additional arguments
y
Numerical matrix containing the control samples
mu
Number indicating the control mean when y is ommited
regulon
Transcriptional interactome
per
Interger indicating the number of permutations to compute the marina null model
cores
Integer indicating the number of cores to use (1 for Windows-based systems)
verbose
Logical, whether progress should be reported
pheno
Character string indicating the phenotype data to use
group1
Vector of character strings indicating the category from phenotype pheno to use as test group
group2
Vector of character strings indicating the category from phenotype pheno to use as control group

Value

Updated diggit object with Master Regulator results

Examples

Run this code
cores <- 3*(Sys.info()[1] != "Windows")+1
data(gbm.expression, package="diggitdata")
data(gbm.aracne, package="diggitdata")

eset <- exprs(gbmExprs)
samples <- pData(gbmExprs)[["subtype"]]
x <- eset[, samples=="MES"]
y <- eset[, samples=="PN"]
dgo <- marina(x, y, regulon=gbmTFregulon, per=100, cores=cores)
dgo
diggitMR(dgo)[1:5]
dgo <- marina(gbmExprs, pheno="subtype", group1="MES", group2="PN", regulon=gbmTFregulon, per=100, cores=cores)
dgo
diggitMR(dgo)[1:5]
x <- diggitClass(expset=gbmExprs, regulon=gbmTFregulon)
dgo <- marina(x, pheno="subtype", group1="MES", group2="PN", per=100, cores=cores)
dgo
diggitMR(dgo)[1:5]

Run the code above in your browser using DataLab