Learn R Programming

diggit (version 1.4.0)

print,diggit-method: Basic methods for class diggit

Description

This document lists a series of basic methods for the class diggit

Usage

"print"(x, pval = 0.05)
"show"(object)
"exprs"(object)
"diggitCNV"(x)
"diggitRegulon"(x)
"diggitMindy"(x)
"diggitFcnv"(x)
"diggitMR"(x)
"diggitViper"(x)
"diggitAqtl"(x)
"diggitConditional"(x)
"summary"(object)
"head"(x, rows = 4, cols = 4)
"mindyFiltering"(x, mr = 0.01, mr.adjust = c("none", "fdr", "bonferroni"))

Arguments

x
Object of class diggit
pval
P-value threshold for the conditional analysis
object
Object of class diggit
rows
Integer indicating the maximum number of rows to show
cols
Integer indicating the maximum number of columns to show
mr
Either a numerical value between 0 and 1 indicating the p-value threshold for the Master Regulator (MR) selection, or a vector of character strings listing the MRs
mr.adjust
Character string indicating the multiple hypothesis test correction for the MRs

Value

print returns summary information about the diggit objectshow returns summary information about the object of class diggitexprs returns the ExpressionSet object containing the expression profile datadiggitCNV returns a matrix containing the CNV datadiggitRegulon returns a regulon object containing the transcriptional interactomediggitMindy returns a regulon object containing the post-translational interactomediggitFcnv returns a vector of p-values for the F-CNVsdiggitMR returns a vector of master regulators NESdiggitViper returns a matrix of VIPER resultsdiggitAqtl returns a matrix of aQTLs (p-value)diggitConditional returns a list containing the conditional analysis resultssummary returns the integrated results from the conditional analysishead returns a list containing a reduced view for an object of class diggitmindyFiltering returns a diggit class object with CNV and aQTL slots filtered to contain only MINDy post-translational modulators of the MRs

Examples

Run this code
data(gbm.expression, package="diggitdata")
data(gbm.cnv, package="diggitdata")
data(gbm.aracne, package="diggitdata")
dobj <- diggitClass(expset=gbmExprs, cnv=gbmCNV, regulon=gbmTFregulon)
print(dobj)
show(dobj)
exprs(dobj)
diggitCNV(dobj)[1:3, 1:3]
diggitRegulon(dobj)
diggitMindy(dobj)
diggitFcnv(dobj)
diggitMR(dobj)
diggitViper(dobj)
diggitAqtl(dobj)
diggitConditional(dobj)
head(dobj)
data(gbm.expression, package="diggitdata")
data(gbm.cnv, package="diggitdata")
data(gbm.mindy, package="diggitdata")
dobj <- diggitClass(expset=gbmExprs, cnv=gbmCNV, mindy=gbmMindy)
dobj <- fCNV(dobj)
dobj
dobj <- mindyFiltering(dobj, mr=c("STAT3", "CEBPD"))
dobj

Run the code above in your browser using DataLab