Estimates the marginal survival function G(T=t) of the censoring process. Compatible with single event and competing risks data.
estSurvCens(dataSet, timeColumn, eventColumns)
Data in original short format (data.frame).
Name of column with discrete time intervals (character scalar).
Names of the event columns of dataSet
. In the competing risks case the event columns have to be in dummy encoding format (numeric vectors).
Named vector of estimated survival function of the censoring process for all time points except the last theoretical interval.
Gerhard Tutz and Matthias Schmid, (2016), Modeling discrete time-to-event data, Springer series in statistics, Doi: 10.1007/978-3-319-28158-2
# NOT RUN {
# Load unemployment data
library(Ecdat)
data(UnempDur)
# Select subsample
subUnempDur <- UnempDur [1:100, ]
######################
# Single event example
# Estimate censoring survival function G(t)
estG <- estSurvCens(dataSet=subUnempDur, timeColumn="spell",
eventColumns="censor1")
estG
#########################
# Competing risks example
# Estimate censoring survival function G(t)
estG <- estSurvCens(dataSet=subUnempDur, timeColumn="spell",
eventColumns=c("censor1", "censor2", "censor3", "censor4"))
estG
# }
Run the code above in your browser using DataLab