Learn R Programming

discSurv (version 2.0.0)

estMargProb: Estimated Marginal Probabilities

Description

Estimates the marginal probability P(T=t|x) based on estimated discrete hazards. The discrete hazards may or may not depend on covariates. The covariates have to be equal across all estimated hazard rates. Therefore the given discrete hazards should only vary over time.

Usage

estMargProb(hazards)

Arguments

hazards

Estimated discrete hazards ("numeric vector")

Value

Estimated marginal probabilities ("numeric vector")

Details

The argument hazards must be given for all intervals [a_0, a_1), [a_1, a_2), ..., [a_q-1, a_q), [a_q, Inf).

References

tutzModelDiscdiscSurv

See Also

estSurv

Examples

Run this code
# NOT RUN {
# Example unemployment data
library(Ecdat)
data(UnempDur)

# Select subsample
subUnempDur <- UnempDur [1:100, ]

# Convert to long format
UnempLong <- dataLong(dataShort = subUnempDur, timeColumn = "spell", eventColumn = "censor1")
head(UnempLong)

# Estimate binomial model with logit link
Fit <- glm(formula = y ~ timeInt + age + logwage, data = UnempLong, family = binomial())

# Estimate discrete survival function given age, logwage of first person
hazard <- predict(Fit, newdata = subset(UnempLong, obj == 1), type = "response")

# Estimate marginal probabilities given age, logwage of first person
MarginalProbCondX <- estMargProb (c(hazard, 1))
MarginalProbCondX
sum(MarginalProbCondX)==1 # TRUE: Marginal probabilities must sum to 1!

# }

Run the code above in your browser using DataLab