Learn R Programming

discSurv (version 2.0.0)

martingaleResid: Martingale Residuals

Description

Estimates the martingale residuals of discrete survival model.

Usage

martingaleResid(hazards, dataSetLong)

# S3 method for discSurvMartingaleResid plot(x, covariates, dataSetLong, ...)

Arguments

hazards

Predicted hazards from a discrete survival model ("numeric vector").

dataSetLong

Data in long format ("class data.frame").

x

Object of class "discSurvMartingaleResid"("class discSurvMartingaleResid")

covariates

Names of covariates to plot ("character vector").

Additional arguments to the plot function

Value

Martingale residuals for each observation in long format ("numeric vector").

Details

Gives a different plot of each marginal covariate against the martingale residuals. Additionally a nonparametric loess estimation is done.

References

tutzModelDiscdiscSurv therneauMartdiscSurv

See Also

glm

Examples

Run this code
# NOT RUN {
# Example with cross validation and unemployment data 
library(Ecdat)
data(UnempDur)
summary(UnempDur$spell)

# Extract subset of data
set.seed(635)
IDsample <- sample(1:dim(UnempDur)[1], 100)
UnempDurSubset <- UnempDur [IDsample, ]

# Conversion to long format
UnempDurSubsetLong <- dataLong(dataShort = UnempDurSubset,
timeColumn = "spell", eventColumn = "censor1")

# Estimate discrete survival continuation ratio model
contModel <- glm(y ~ timeInt + age + logwage, data = UnempDurSubsetLong,
family = binomial(link = "logit"))

# Fit hazards to the data set in long format
hazPreds <- predict(contModel, type = "response")

# Calculate martingale residuals for the unemployment data subset
MartResid <- martingaleResid (hazards = hazPreds, dataSetLong = UnempDurSubsetLong)
MartResid
sum(MartResid)

# Plot martingale residuals vs each covariate in the event interval
# Dotted line represents the loess estimate
plot(MartResid, covariates = c("age", "logwage"), dataSetLong = UnempDurSubsetLong)

# }

Run the code above in your browser using DataLab