# NOT RUN {
# Example unemployment data
library(Ecdat)
library(caret)
data(UnempDur)
# Select training and testing subsample
subUnempDur <- UnempDur[which(UnempDur$spell < 10),]
subUnempDur <- subUnempDur[1:250,]
#creating status variable for data partitioning
subUnempDur$status <- ifelse(subUnempDur$censor1, 1,
ifelse(subUnempDur$censor2, 2, ifelse(
subUnempDur$censor3, 3, ifelse(subUnempDur$censor4, 4, 0))))
indexList <- createFolds(subUnempDur$status*max(subUnempDur$spell) + subUnempDur$spell, k = 5)
# performing minimal node size pruning
formula <- responses ~ timeInt + age + logwage
sizes <- 1:10
timeColumn <- "spell"
eventColumns <- c("censor1", "censor2", "censor3","censor4")
optiTree <- minNodePruningCompRisks(formula, subUnempDur, treetype = "rpart", sizes = sizes,
indexList = indexList, timeColumn = timeColumn, eventColumns = eventColumns, lambda = 1,
logOut = TRUE)
# }
Run the code above in your browser using DataLab