System classes
system_base-class
: System base class
system_basic-class
: Basic model's system class
system_deterministic_adjustment-class
: Deterministic adjustment model's system class
system_directional-class
: Directional system class
system_equilibrium-class
: Equilibrium model's system class
system_stochastic_adjustment-class
: Stochastic adjustment model's system class
demand
Demand equation.
supply
Supply equation.
correlated_shocks
Boolean indicating whether the shock of the equations of the system are correlated.
sample_separation
Boolean indicating whether the sample of the system is separated.
quantity_vector
A vector with the system's observed quantities.
price_vector
A vector with the system's observed prices.
rho
Correlation coefficient of demand and supply shocks.
rho1
$$\rho_{1} = \frac{1}{\sqrt{1 - \rho}}$$
rho2
$$\rho_{2} = \rho\rho_{1}$$
lh
Likelihood values for each observation.
gamma
Excess demand coefficient.
delta
$$\delta = \gamma + \alpha_{d} - \alpha_{s}$$
mu_P
$$\mu_{P} = \mathrm{E}P$$
var_P
$$V_{P} = \mathrm{Var}P$$
sigma_P
$$\sigma_{P} = \sqrt{V_{P}}$$
h_P
$$h_{P} = \frac{P - \mu_{P}}{\sigma_{P}}$$
lagged_price_vector
A vector with the system's observed prices lagged by one date.
mu_Q
$$\mu_{Q} = \mathrm{E}Q$$
var_Q
$$V_{Q} = \mathrm{Var}Q$$
sigma_Q
$$\sigma_{Q} = \sqrt{V_{Q}}$$
h_Q
$$h_{Q} = \frac{Q - \mu_{Q}}{\sigma_{Q}}$$
rho_QP
$$\rho_{QP} = \frac{\mathrm{Cov}(Q,P)}{\sqrt{\mathrm{Var}Q\mathrm{Var}P}}$$
rho_1QP
$$\rho_{1,QP} = \frac{1}{\sqrt{1 - \rho_{QP}^2}}$$
rho_2QP
$$\rho_{2,QP} = \rho_{QP}\rho_{1,QP}$$
z_QP
$$z_{QP} = \frac{h_{Q} - \rho_{QP}h_{P}}{\sqrt{1 - \rho_{QP}^2}}$$
z_PQ
$$z_{PQ} = \frac{h_{P} - \rho_{PQ}h_{Q}}{\sqrt{1 - \rho_{PQ}^2}}$$
price_equation
Price equation.
zeta
$$\zeta = \sqrt{1 - \rho_{DS}^2 - \rho_{DP}^2 - \rho_{SP}^2 + 2 \rho_DP \rho_DS \rho_SP}$$
zeta_DD
$$\zeta_{DD} = 1 - \rho_{SP}^2$$
zeta_DS
$$\zeta_{DS} = \rho_{DS} - \rho_{DP}\rho_{SP}$$
zeta_DP
$$\zeta_{DP} = \rho_{DP} - \rho_{DS}\rho_{SP}$$
zeta_SS
$$\zeta_{SS} = 1 - \rho_{DP}^2$$
zeta_SP
$$\zeta_{SP} = \rho_{SP} - \rho_{DS}\rho_{DP}$$
zeta_PP
$$\zeta_{PP} = 1 - \rho_{DS}^2$$
mu_D
$$\mu_{D} = \mathrm{E}D$$
var_D
$$V_{D} = \mathrm{Var}D$$
sigma_D
$$\sigma_{D} = \sqrt{V_{D}}$$
mu_S
$$\mu_{S} = \mathrm{E}S$$
var_S
$$V_{S} = \mathrm{Var}S$$
sigma_S
$$\sigma_{S} = \sqrt{V_{S}}$$
sigma_DP
$$\sigma_{DP} = \mathrm{Cov}(D, P)$$
sigma_DS
$$\sigma_{DS} = \mathrm{Cov}(D, S)$$
sigma_SP
$$\sigma_{SP} = \mathrm{Cov}(S, P)$$
rho_DS
$$\rho_{DS} = \frac{\mathrm{Cov}(D,S)}{\sqrt{\mathrm{Var}D\mathrm{Var}S}}$$
rho_DP
$$\rho_{DP} = \frac{\mathrm{Cov}(D,P)}{\sqrt{\mathrm{Var}D\mathrm{Var}P}}$$
rho_SP
$$\rho_{SP} = \frac{\mathrm{Cov}(S,P)}{\sqrt{\mathrm{Var}S\mathrm{Var}P}}$$
h_D
$$h_{D} = \frac{D - \mu_{D}}{\sigma_{D}}$$
h_S
$$h_{S} = \frac{S - \mu_{S}}{\sigma_{S}}$$
z_DP
$$z_{DP} = \frac{h_{D} - \rho_{DP}h_{P}}{\sqrt{1 - \rho_{DP}^2}}$$
z_PD
$$z_{PD} = \frac{h_{P} - \rho_{PD}h_{D}}{\sqrt{1 - \rho_{PD}^2}}$$
z_SP
$$z_{SP} = \frac{h_{S} - \rho_{SP}h_{P}}{\sqrt{1 - \rho_{SP}^2}}$$
z_PS
$$z_{PS} = \frac{h_{P} - \rho_{PS}h_{S}}{\sqrt{1 - \rho_{PS}^2}}$$
omega_D
$$\omega_{D} = \frac{h_{D}\zeta_{DD} - h_{S}\zeta_{DS} - h_{P}\zeta_{DP}}{\zeta_{DD}}$$
omega_S
$$\omega_{S} = \frac{h_{S}\zeta_{SS} - h_{S}\zeta_{SS} - h_{P}\zeta_{SP}}{\zeta_{SS}}$$
w_D
$$w_{D} = - \frac{h_{D}^2 - 2 h_{D} h_{P} \rho_{DP} + h_{P}^2}{2\zeta_{SS}}$$
w_S
$$w_{S} = - \frac{h_{S}^2 - 2 h_{S} h_{P} \rho_{SP} + h_{P}^2}{2\zeta_{DD}}$$
psi_D
$$\psi_{D} = \phi\left(\frac{\omega_{D}}{\zeta}\right)$$
psi_S
$$\psi_{S} = \phi\left(\frac{\omega_{S}}{\zeta}\right)$$
Psi_D
$$\Psi_{D} = 1 - \Phi\left(\frac{\omega_{D}}{\zeta}\right)$$
Psi_S
$$\Psi_{S} = 1 - \Phi\left(\frac{\omega_{S}}{\zeta}\right)$$
g_D
$$g_{D} = \frac{\psi_{D}}{\Psi_{D}}$$
g_S
$$g_{S} = \frac{\psi_{S}}{\Psi_{S}}$$
rho_ds
rho_dp
Correlation of demand and price equations' shocks.
rho_sp
Correlation of supply and price equations' shocks.
L_D
Likelihood conditional on excess supply.
L_S
Likelihood conditional on excess demand.
Classes with data and functionality describing systems of models.