r1 <- raster(ncol=10, nrow=10) ; r1[] <- (1:ncell(r1))/10 + rnorm(ncell(r1))
r2 <- raster(ncol=10, nrow=10) ; r2[] <- (1:ncell(r1))/10 + rnorm(ncell(r2))
r3 <- raster(ncol=10, nrow=10) ; r3[] <- (1:ncell(r1))/10 + rnorm(ncell(r3))
rasters <- stack(r1,r2,r3)
plot(rasters)
xy <- expand.grid(c(10,30,50),c(10,30,50))
#plot(r1); points(xy)
refpt <- extract(rasters,xy)
mess <- mess(x=rasters, v=refpt, full=TRUE)
plot(mess)
filename <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
bradypus <- read.table(filename, header=TRUE, sep=',')
bradypus <- bradypus[,2:3]
files <- list.files(path=paste(system.file(package="dismo"),'/ex', sep=''), pattern='grd', full.names=TRUE )
predictors <- stack(files)
predictors <- dropLayer(x=predictors,i=9)
reference_points <- extract(predictors, bradypus)
mess.out <- mess(x=predictors, v=reference_points, full=TRUE)
plot(mess.out)Run the code above in your browser using DataLab