Learn R Programming

⚠️There's a newer version (1.3-16) of this package.Take me there.

dismo (version 0.9-1)

Species distribution modeling

Description

Functions for species distribution modeling, that is, predicting entire geographic distributions form occurrences at a number of sites.

Copy Link

Version

Install

install.packages('dismo')

Monthly Downloads

12,778

Version

0.9-1

License

GPL (>= 3)

Maintainer

Robert Hijmans

Last Published

December 12th, 2013

Functions in dismo (0.9-1)

density

density
evaluate

Model evaluation
maxent

Maxent
dcEvaluate

Evaluate by distance class
Geographic Distance

Geographic distance model
Evaluation plots

Plot model evaluation data
biovars

bioclimatic variables
gbm.simplify

gbm simplify
randomPoints

Random points
acaule

Solanum acaule data
gbm.plot.fits

gbm plot fitted values
calc.deviance

Calculate deviance
pairs

Pair plots
ModelEvaluation

Class "ModelEvaluation"
gbm.fixed

gbm fixed
pointValues

point values
Circles

Circles range
gbm.step

gbm step
bioclim

Bioclim
ecolim

Ecolim model
mess

Multivariate environmental similarity surfaces (MESS)
voronoi

Voronoi polygons
geocode

Georeferencing with Google
kfold

k-fold partitioning
nicheEquivalency

Niche equivalency
gbm.plot

gbm plot
Voronoi Hull

Voronoi hull model
nicheOverlap

Niche overlap
plot

Plot predictor values
mahal

Mahalanobis model
Anguilla data

Anguilla australis distribution data
pwdSample

Pair-wise distance sampling
InvDistW

Inverse-distance weighted model
predict

Distribution model predictions
boxplot

Box plot of model evaluation data
domain

Domain
gridSample

Stratified regular sample on a grid
gmap

Get a Google map
lookup

lookup
biogeomancer

Georeferencing
threshold

Find a threshold
ecocrop

Ecocrop model
Random null model

Random null model
response

response plots
ssb

Spatial sorting bias
Convex Hull

Convex hull model
dismo-package

Species distribution modeling
prepareData

Prepare data for model fitting
gbm.interactions

gbm interactions
evaluateROCR

Model testing with the ROCR package
gbif

Data from GBIF
gbm.perspec

gbm perspective plot
DistModel

Class "DistModel"
gbm.holdout

gbm holdout