Learn R Programming

⚠️There's a newer version (1.3-16) of this package.Take me there.

dismo (version 1.0-12)

Species Distribution Modeling

Description

Functions for species distribution modeling, that is, predicting entire geographic distributions form occurrences at a number of sites.

Copy Link

Version

Install

install.packages('dismo')

Monthly Downloads

10,019

Version

1.0-12

License

GPL (>= 3)

Maintainer

Robert Hijmans

Last Published

March 15th, 2015

Functions in dismo (1.0-12)

gbm.step

gbm step
Anguilla data

Anguilla australis distribution data
Voronoi Hull

Voronoi hull model
Convex Hull

Convex hull model
mahal

Mahalanobis model
threshold

Find a threshold
nicheOverlap

Niche overlap
calc.deviance

Calculate deviance
maxent

Maxent
dismo-package

Species distribution modeling
pointValues

point values
evaluateROCR

Model testing with the ROCR package
nicheEquivalency

Niche equivalency
prepareData

Prepare data for model fitting
gmap

Get a Google map
DistModel

Class "DistModel"
gbif

Data from GBIF
Geographic Distance

Geographic distance model
Circles

Circles range
gbm.interactions

gbm interactions
ModelEvaluation

Class "ModelEvaluation"
pwdSample

Pair-wise distance sampling
dcEvaluate

Evaluate by distance class
acaule

Solanum acaule data
gbm.simplify

gbm simplify
kfold

k-fold partitioning
gbm.plot.fits

gbm plot fitted values
gbm.plot

gbm plot
randomPoints

Random points
gbm.perspec

gbm perspective plot
evaluate

Model evaluation
gbm.fixed

gbm fixed
boxplot

Box plot of model evaluation data
ecolim

Ecolim model
plot

Plot predictor values
geocode

Georeferencing with Google
biovars

bioclimatic variables
density

density
Random null model

Random null model
voronoi

Voronoi polygons
ecocrop

Ecocrop model
response

response plots
ssb

Spatial sorting bias
bioclim

Bioclim
predict

Distribution model predictions
Evaluation plots

Plot model evaluation data
gbm.holdout

gbm holdout
mess

Multivariate environmental similarity surfaces (MESS)
domain

Domain
gridSample

Stratified regular sample on a grid
InvDistW

Inverse-distance weighted model
pairs

Pair plots