Learn R Programming

⚠️There's a newer version (1.3-16) of this package.Take me there.

dismo (version 1.3-3)

Species Distribution Modeling

Description

Methods for species distribution modeling, that is, predicting the environmental similarity of any site to that of the locations of known occurrences of a species.

Copy Link

Version

Install

install.packages('dismo')

Monthly Downloads

12,778

Version

1.3-3

License

GPL (>= 3)

Maintainer

Robert Hijmans

Last Published

November 17th, 2020

Functions in dismo (1.3-3)

CirclesRange

Circles range
bioclim

Bioclim
calc.deviance

Calculate deviance
acaule

Solanum acaule data
circleHull

Circle hull model
DistModel

Class "DistModel"
biovars

bioclimatic variables
ModelEvaluation

Class "ModelEvaluation"
boxplot

Box plot of model evaluation data
ecocrop

Ecocrop model
density

density
dcEvaluate

Evaluate by distance class
mahal

Mahalanobis model
ecolim

Ecolim model
maxent

Maxent
evaluate

Model evaluation
gbif

Data from GBIF
rectHull

Rectangular hull model
response

response plots
Convex Hull

Convex hull model
evaluateROCR

Model testing with the ROCR package
Geographic Distance

Geographic distance model
domain

Domain
ssb

Spatial sorting bias
dismo-package

Species distribution modeling
Anguilla data

Anguilla australis distribution data
threshold

Find a threshold
InvDistW

Inverse-distance weighted model
gbm.fixed

gbm fixed
gbm.simplify

gbm simplify
gbm.step

gbm step
geocode

Georeferencing with Google
gmap

Get a Google map
pairs

Pair plots
pwdSample

Pair-wise distance sampling
gbm.holdout

gbm holdout
gridSample

Stratified regular sample on a grid
plot

Plot predictor values
randomPoints

Random points
gbm.plot.fits

gbm plot fitted values
gbm.plot

gbm plot
kfold

k-fold partitioning
mess

Multivariate environmental similarity surfaces (MESS)
gbm.interactions

gbm interactions
nicheEquivalency

Niche equivalency
gbm.perspec

gbm perspective plot
Evaluation plots

Plot model evaluation data
nicheOverlap

Niche overlap
pointValues

point values
predict

Distribution model predictions
Random null model

Random null model
prepareData

Prepare data for model fitting
voronoi

Voronoi polygons
Voronoi Hull

Voronoi hull model