Learn R Programming

displayHTS (version 1.0)

dualFlashlight.fn: Dual-Flashlight Plot

Description

A function that draws a dual-flashlight plot, volcano plot, and plate correlation plot.

Usage

dualFlashlight.fn(result.df, wellName = "WELL_USAGE", x.name = "mean", y.name = "ssmd", sampleName = "Sample", sampleColor = "black", controls = NULL, controlColors = NULL, xlab = "Average Fold Change", ylab = "SSMD", main = "Dual-Flashlight Plot", x.legend = NA, y.legend = NA, cex.point = 1, cex.legend = 0.8, xat = NULL, xMark = NULL, yat = NULL, yMark = NULL, xLines = NULL, yLines = NULL)

Arguments

result.df
A data frame containing data or results from an HTS experiment. it must includes at least three columns for well name, x (e.g., average fold change in log) and y (e.g.,SSMD), respectively.
wellName
Name of the column in result.df indicating well names.
x.name
Name of the column in result.df indicating values for x-axis.
y.name
Name of the column in result.df indicating values for y-axis.
sampleName
The name of the well type indicating sample wells.
sampleColor
The color for sample wells.
controls
A vector including controls to be shown in the plot.
controlColors
A vector including the color of the controls to be shown in the plot. It must have the same length as 'controls'.
xlab
Same as internal function 'plot'.
ylab
Same as internal function 'plot'.
main
Same as internal function 'plot'.
x.legend
The x-coordinates to be used to position the legend.
y.legend
The y-coordinates to be used to position the legend.
cex.point
Defines the size of points in the plot.
cex.legend
Defines the size of the legend in the plot.
xat
The position of x-axis to be labeled.
xMark
The labels of x-axis corresponding to 'xat'.
yat
The position of y-axis to be labeled.
yMark
The labels of y-axis corresponding to 'yat'.
xLines
X-values indicating positions of vertical grey lines to be drawn.
yLines
Y-values indicating positions of horizontal grey lines to be drawn.

References

Zhang XHD, Zhang ZZ. 2013. displayHTS: a R package displaying data and results from high-throughput screening experiments. Bioinformatics (submitted). Zhang XHD, 2011. Optimal High-Throughput Screening: Practical Experimental Design and Data Analysis for Genome-scale RNAi Research. Cambridge University Press, Cambridge, UK. Zhang XHD. 2009. A method effectively comparing gene effects in multiple conditions in RNAi and expression profiling research. Pharmacogenomics 10(3):345-358. Zhang XHD. 2010. Assessing the size of gene or RNAi effects in multi-factor high-throughput experiments. Pharmacogenomics 11(2): 199 - 213. Zhang XHD, Santini F, Lacson R, Marine SD, Wu Q, Benetti L, Yang R, McCampbell A, Berger JP, Toolan DM, Stec EM, Holder DJ, Soper KA, Heyse JF and Ferrer M. 2011. cSSMD: Assessing collective activity of multiple siRNAs in genome-scale RNAi screens. Bioinformatics 27(20): 2775-2781.

See Also

plateWellSeries.fn, imageDesign.fn, imageIntensity.fn

Examples

Run this code
  # for dual-flashlight plot
  data("HTSresults", package = "displayHTS")
  par( mfrow=c(1, 1) )
  dualFlashlight.fn(HTSresults, wellName="WELL_USAGE", x.name="mean",
                    y.name="ssmd", sampleName="Sample", sampleColor="black", 
                    controls = c("negCTRL", "posCTRL1", "mock1"),
                    controlColors = c("green", "red", "lightblue"), 
                    xlab="Average Fold Change", ylab="SSMD",
                    main="Dual-Flashlight Plot", x.legend=NA, y.legend=NA, 
                    cex.point=1, cex.legend = 0.8,
                    xat=log2( c(1/8, 1/4, 1/2, 1, 2, 4, 8) ), 
                    xMark=c("1/8", "1/4", "1/2", "1", "2", "4", "8"),
                    xLines=log2(c(1/4, 1/2 ,1, 2, 4)),
                    yLines=c(-5, -3, -2, -1, 0, 1, 2, 3, 5 ) )
  # for volcano plot
  result.df=cbind(HTSresults,"neg.log10.pval"=-log10(HTSresults[,"p.value"]))
  dualFlashlight.fn(result.df, wellName="WELL_USAGE", x.name="mean",
                    y.name="neg.log10.pval",
                    sampleName="Sample", sampleColor="black", 
                    controls = c("negCTRL", "posCTRL1", "mock1"),
                    controlColors = c("green", "red", "lightblue"), 
                    xlab="Average Fold Change", ylab="p-value",
                    main="Volcano Plot", x.legend=NA, y.legend=-log10(0.06), 
                    cex.point=1, cex.legend = 0.8,
                    xat=log2( c(1/8, 1/4, 1/2, 1, 2, 4, 8) ), 
                    xMark=c("1/8", "1/4", "1/2", "1", "2", "4", "8"),
                    yat=-log10( c(0.00001, 0.0001, 0.001, 0.01, 0.1, 1) ), 
                    yMark=c(0.00001, 0.0001, 0.001, 0.01, 0.1, 1),
                    xLines=log2(c(1/4, 1/2 ,1, 2, 4)),
                    yLines=-log10( c( 0.001, 0.01, 0.05) ) )
  # plate pair correlation plot
  data("HTSdataSort", package = "displayHTS")
  data.df= cbind(HTSdataSort[1:384,], HTSdataSort[384+1:384,])
  names(data.df)=
    c("SOBARCODE.1", "BARCODE.1", "XPOS.1", "YPOS.1", "WELL_USAGE.1",   
      "Compound.1", "Intensity.1", "log2Intensity.1",
      "SOBARCODE.2", "BARCODE.2", "XPOS.2", "YPOS.2", "WELL_USAGE.2",   
      "Compound.2", "Intensity.2", "log2Intensity.2")
  dualFlashlight.fn(data.df, wellName="WELL_USAGE.1", x.name="log2Intensity.1",
                    y.name="log2Intensity.2", 
                    sampleName="Sample", sampleColor="black", 
                    controls = c("negCTRL", "posCTRL1", "mock1"),
                    controlColors = c("green", "red", "lightblue"), 
                    xlab="log2 intensity in plate 1",
                    ylab="log2 intensity in plate 2",
                    main="Plate Pair Correlation Plot", x.legend=NA,
                    y.legend=NA, cex.point=1, cex.legend = 0.8 )
  abline(0,1)

Run the code above in your browser using DataLab