data(HTSdataSort)
wells = as.character(unique(HTSdataSort[, "WELL_USAGE"])); wells
colors = c("black", "yellow", "grey", "blue", "skyblue", "green", "red")
orders=c(1, 3, 2, 4, 5, 7, 6)
# by row
par( mfrow=c(2,1) )
plateWellSeries.fn(data.df = HTSdataSort, intensityName="log2Intensity",
plateName="BARCODE", wellName="WELL_USAGE",
rowName="XPOS", colName="YPOS", show.wellTypes=wells,
order.wellTypes=orders, color.wells=colors,
pch.wells=rep(1, 7), ppf=6, byRow=TRUE,
yRange=NULL, cex.point=0.25,cex.legend=0.3)
# by column
par( mfrow=c(2,1) )
plateWellSeries.fn(data.df = HTSdataSort, intensityName="log2Intensity",
plateName="BARCODE", wellName="WELL_USAGE",
rowName="XPOS", colName="YPOS", show.wellTypes=wells,
order.wellTypes=orders, color.wells=colors,
pch.wells=rep(1, 7), ppf=6, byRow= FALSE,
yRange=NULL, cex.point=0.25,cex.legend=0.3)
# display hits
data(HTSresults)
condtSample = HTSresults[, "WELL_USAGE"] == "Sample"
condtUp = HTSresults[,"ssmd"] >= 1 & HTSresults[,"mean"] >= log2(1.2)
condtDown = HTSresults[,"ssmd"] <= -1 & HTSresults[,"mean"] <= -log2(1.2)
sum(condtSample & (condtUp | condtDown) )/sum(condtSample)
hit.vec = as.character(HTSresults[, "WELL_USAGE"])
hit.vec[ condtSample & condtUp ] = "up-hit"
hit.vec[ condtSample & condtDown ] = "down-hit"
hit.vec[ condtSample & !condtUp & !condtDown] = "non-hit"
result.df = cbind(HTSresults, "hitResult"=hit.vec)
wells = as.character(unique(result.df[, "hitResult"])); wells
orders = c(1, 3, 4, 6, 7, 8, 9, 2, 5)
colors = c("black", "green", "yellow", "red",
"grey", "purple1", "purple2", "lightblue", "purple3")
par(mfrow=c(1,1))
plateWellSeries.fn(data.df = result.df, intensityName="mean",
plateName="SOBARCODE", wellName="hitResult",
rowName="XPOS", colName="YPOS", show.wellTypes=wells,
order.wellTypes=orders, color.wells=colors,
pch.wells=rep(1, 7), ppf=6, byRow= FALSE,
yRange=NULL, cex.point=0.5,cex.legend=0.55,
y.legend=-0.5)
Run the code above in your browser using DataLab