#weekly covid prevalence in California
tsl <- tsl_initialize(
x = covid_prevalence,
name_column = "name",
time_column = "time"
)
#subset 10 elements to accelerate example execution
tsl <- tsl_subset(
tsl = tsl,
names = 1:10
)
if(interactive()){
#plotting first three time series
tsl_plot(
tsl = tsl[1:3],
guide_columns = 3
)
}
#dissimilarity analysis
distantia_df <- distantia(
tsl = tsl,
lock_step = TRUE
)
#hierarchical clustering
#automated number of clusters
#automated method selection
distantia_clust <- distantia_cluster_hclust(
df = distantia_df,
clusters = NULL,
method = NULL
)
#names of the output object
names(distantia_clust)
#cluster object
distantia_clust$cluster_object
#distance matrix used for clustering
distantia_clust$d
#number of clusters
distantia_clust$clusters
#clustering data frame
#group label in column "cluster"
#negatives in column "silhouette_width" higlight anomalous cluster assignation
distantia_clust$df
#mean silhouette width of the clustering solution
distantia_clust$silhouette_width
#plot
if(interactive()){
dev.off()
clust <- distantia_clust$cluster_object
k <- distantia_clust$clusters
#tree plot
plot(
x = clust,
hang = -1
)
#highlight groups
stats::rect.hclust(
tree = clust,
k = k,
cluster = stats::cutree(
tree = clust,
k = k
)
)
}
Run the code above in your browser using DataLab