#weekly covid prevalence in California
tsl <- tsl_initialize(
x = covid_prevalence,
name_column = "name",
time_column = "time"
)
#subset 10 elements to accelerate example execution
tsl <- tsl_subset(
tsl = tsl,
names = 1:10
)
if(interactive()){
#plotting first three time series
tsl_plot(
tsl = tsl[1:3],
guide_columns = 3
)
}
#dissimilarity analysis
distantia_df <- distantia(
tsl = tsl,
lock_step = TRUE
)
#hierarchical clustering
#automated number of clusters
distantia_kmeans <- distantia_cluster_kmeans(
df = distantia_df,
clusters = NULL
)
#names of the output object
names(distantia_kmeans)
#kmeans object
distantia_kmeans$cluster_object
#distance matrix used for clustering
distantia_kmeans$d
#number of clusters
distantia_kmeans$clusters
#clustering data frame
#group label in column "cluster"
distantia_kmeans$df
#mean silhouette width of the clustering solution
distantia_kmeans$silhouette_width
#kmeans plot
# factoextra::fviz_cluster(
# object = distantia_kmeans$cluster_object,
# data = distantia_kmeans$d,
# repel = TRUE
# )
Run the code above in your browser using DataLab