Learn R Programming

distantia (version 2.0.0)

f_detrend_difference: Data Transformation: Detrending and Differencing

Description

Performs differencing to remove trends from a zoo time series, isolating short-term fluctuations by subtracting values at specified lags. The function preserves the original index and metadata, with an option to center the output around the mean of the original series. Suitable for preprocessing time series data to focus on random fluctuations unrelated to overall trends.

Usage

f_detrend_difference(x = NULL, lag = 1, center = TRUE, ...)

Value

zoo object

Arguments

x

(required, zoo object) Zoo time series object to transform.

lag

(optional, integer)

center

(required, logical) If TRUE, the output is centered at zero. If FALSE, it is centered at the data mean. Default: TRUE

...

(optional, additional arguments) Ignored in this function.

See Also

Other tsl_transformation: f_binary(), f_clr(), f_detrend_linear(), f_detrend_poly(), f_hellinger(), f_list(), f_log(), f_percent(), f_proportion(), f_proportion_sqrt(), f_rescale_global(), f_rescale_local(), f_scale_global(), f_scale_local(), f_trend_linear(), f_trend_poly()

Examples

Run this code
x <- zoo_simulate(cols = 2)

y_lag1 <- f_detrend_difference(
  x = x,
  lag = 1
)

y_lag5 <- f_detrend_difference(
  x = x,
  lag = 5
)

if(interactive()){
  zoo_plot(x)
  zoo_plot(y_lag1)
  zoo_plot(y_lag5)
}

Run the code above in your browser using DataLab