powered by
Fits a linear model on each column of a zoo object using time as a predictor, and predicts the outcome.
f_trend_linear(x = NULL, center = TRUE, ...)
zoo object
(required, zoo object) Zoo time series object to transform.
(required, logical) If TRUE, the output is centered at zero. If FALSE, it is centered at the data mean. Default: TRUE
(optional, additional arguments) Ignored in this function.
Other tsl_transformation: f_binary(), f_clr(), f_detrend_difference(), f_detrend_linear(), f_detrend_poly(), f_hellinger(), f_list(), f_log(), f_percent(), f_proportion(), f_proportion_sqrt(), f_rescale_global(), f_rescale_local(), f_scale_global(), f_scale_local(), f_trend_poly()
f_binary()
f_clr()
f_detrend_difference()
f_detrend_linear()
f_detrend_poly()
f_hellinger()
f_list()
f_log()
f_percent()
f_proportion()
f_proportion_sqrt()
f_rescale_global()
f_rescale_local()
f_scale_global()
f_scale_local()
f_trend_poly()
x <- zoo_simulate(cols = 2) y <- f_trend_linear( x = x ) if(interactive()){ zoo_plot(x) zoo_plot(y) }
Run the code above in your browser using DataLab