# Minimum-methods

From distr v2.6
0th

Percentile

##### Methods for functions Minimum and Maximum in Package distr'

Minimum and Maximum-methods

Keywords
methods, distribution
##### Usage
Minimum(e1, e2, ...)
Maximum(e1, e2, ...)
"Minimum"(e1,e2, ...)
"Minimum"(e1,e2, ...)
"Minimum"(e1,e2,  withSimplify = getdistrOption("simplifyD"))
"Minimum"(e1,e2,  withSimplify = getdistrOption("simplifyD"))
"Maximum"(e1,e2,  withSimplify = getdistrOption("simplifyD"))
"Minimum"(e1,e2, ...)
"Minimum"(e1,e2, ...)
"Minimum"(e1,e2, withSimplify = getdistrOption("simplifyD"))
"Maximum"(e1,e2,  withSimplify = getdistrOption("simplifyD"))
##### Arguments
e1
distribution object
e2
distribution object or numeric
...
further arguments (to be able to call various methods with the same arguments
withSimplify
logical; is result to be piped through a call to simplifyD?

##### Methods

Minimum
signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution"): returns the distribution of min(X1,X2), if X1,X2 are independent and distributed according to e1 and e2 respectively; the result is again of class "AbscontDistribution"
Minimum
signature(e1 = "DiscreteDistribution", e2 = "DiscreteDistribution"): returns the distribution of min(X1,X2), if X1,X2 are independent and distributed according to e1 and e2 respectively; the result is again of class "DiscreteDistribution"
Minimum
signature(e1 = "AbscontDistribution", e2 = "Dirac"): returns the distribution of min(X1,X2), if X1,X2 are distributed according to e1 and e2 respectively; the result is of class "UnivarLebDecDistribution"
Minimum
signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"): returns the distribution of min(X1,X2), if X1,X2 are distributed according to e1 and e2 respectively; the result is of class "UnivarLebDecDistribution"
Minimum
signature(e1 = "AcDcLcDistribution", e2 = "numeric"): if e2 = $n$, returns the distribution of min(X1,X2,...,Xn), if X1,X2, ..., Xn are i.i.d. according to e1; the result is of class "UnivarLebDecDistribution"
Maximum
signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"): returns the distribution of max(X1,X2), if X1,X2 are distributed according to e1 and e2 respectively; translates into -Minimum(-e1,-e2); the result is of class "UnivarLebDecDistribution"
Maximum
signature(e1 = "AcDcLcDistribution", e2 = "numeric"): if e2 = $n$, returns the distribution of max(X1,X2,...,Xn), if X1,X2, ..., Xn are i.i.d. according to e1; translates into -Minimum(-e1,e2); the result is of class "UnivarLebDecDistribution"

Huberize, Truncate

##### Aliases
• Minimum-methods
• Minimum
• Maximum-methods
• Maximum
• Minimum,AbscontDistribution,AbscontDistribution-method
• Minimum,DiscreteDistribution,DiscreteDistribution-method
• Minimum,AbscontDistribution,Dirac-method
• Minimum,AcDcLcDistribution,AcDcLcDistribution-method
• Minimum,AbscontDistribution,numeric-method
• Minimum,DiscreteDistribution,numeric-method
• Minimum,AcDcLcDistribution,numeric-method
• Maximum,AcDcLcDistribution,AcDcLcDistribution-method
• Maximum,AcDcLcDistribution,numeric-method
##### Examples
plot(Maximum(Unif(0,1), Minimum(Unif(0,1), Unif(0,1))))
plot(Minimum(Exp(4),4))
## a sometimes lengthy example...
## Not run: plot(Minimum(Norm(),Pois()))
`
Documentation reproduced from package distr, version 2.6, License: LGPL-3

### Community examples

Looks like there are no examples yet.