Mathematical and statistical functions for the Gumbel distribution, which is commonly used to model the maximum (or minimum) of a number of samples of different distributions, and is a special case of the Generalised Extreme Value distribution.
Returns an R6 object inheriting from class SDistribution.
Gumbel$new(location = 0, scale = 1, decorators = NULL, verbose = FALSE)
Argument | Type | Details |
location |
numeric | location parameter. |
scale |
numeric | scale parameter. |
decorators
Decorator
decorators to add functionality. See details.
The Gumbel distribution is parameterised with location
as a numeric and scale
as a positive numeric.
Variable | Return |
name |
Name of distribution. |
short_name |
Id of distribution. |
description |
Brief description of distribution. |
Accessor Methods | Link |
decorators() |
decorators |
traits() |
traits |
valueSupport() |
valueSupport |
variateForm() |
variateForm |
type() |
type |
properties() |
properties |
support() |
support |
symmetry() |
symmetry |
sup() |
sup |
inf() |
inf |
dmax() |
dmax |
dmin() |
dmin |
skewnessType() |
skewnessType |
kurtosisType() |
kurtosisType |
Statistical Methods |
Link |
pdf(x1, ..., log = FALSE, simplify = TRUE) |
pdf |
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
cdf |
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
quantile.Distribution |
rand(n, simplify = TRUE) |
rand |
mean() |
mean.Distribution |
variance() |
variance |
stdev() |
stdev |
prec() |
prec |
cor() |
cor |
skewness() |
skewness |
kurtosis(excess = TRUE) |
kurtosis |
entropy(base = 2) |
entropy |
mgf(t) |
mgf |
cf(t) |
cf |
pgf(z) |
pgf |
median() |
median.Distribution |
iqr() |
iqr |
Parameter Methods |
Link |
parameters(id) |
parameters |
getParameterValue(id, error = "warn") |
getParameterValue |
setParameterValue(..., lst = NULL, error = "warn") |
setParameterValue |
Validation Methods |
Link |
liesInSupport(x, all = TRUE, bound = FALSE) |
liesInSupport |
liesInType(x, all = TRUE, bound = FALSE) |
liesInType |
Representation Methods |
Link |
strprint() |
strprint |
print() |
print |
summary(full = T) |
summary.Distribution |
plot() |
Coming Soon. |
qqplot() |
Coming Soon. |
The Gumbel distribution parameterised with location,
The distribution is supported on the Reals.
Apery's Constant to 16 significant figures is used in the skewness calculation. The gammaz
function from the pracma
package is used in the cf
to allow complex inputs.
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
listDistributions
for all available distributions. Frechet
and Weibull
for other special cases of the generalized extreme value distribution. gammaz
for the references for the gamma function with complex inputs.
# NOT RUN {
x = Gumbel$new(location = 2, scale = 5)
# Update parameters
x$setParameterValue(scale = 3)
x$parameters()
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab