Mathematical and statistical functions for the Hypergeometric distribution, which is commonly used to model the number of successes out of a population containing a known number of possible successes, for example the number of red balls from an urn or red, blue and yellow balls.
Returns an R6 object inheriting from class SDistribution.
Hypergeometric$new(size = 10, successes = 5, failures = NULL, draws = 2, decorators = NULL, verbose = FALSE)
Argument | Type | Details |
size |
numeric | population size. |
successes |
numeric | number of population successes. |
failures |
numeric | number of population failures. |
draws |
numeric | number of draws. |
decorators
Decorator
decorators to add functionality. See details.
The Hypergeometric distribution is parameterised with size
and draws
as positive whole numbers, and either successes
or failures
as positive whole numbers. These are related via, failures
is given then successes
is ignored.
Variable | Return |
name |
Name of distribution. |
short_name |
Id of distribution. |
description |
Brief description of distribution. |
Accessor Methods | Link |
decorators() |
decorators |
traits() |
traits |
valueSupport() |
valueSupport |
variateForm() |
variateForm |
type() |
type |
properties() |
properties |
support() |
support |
symmetry() |
symmetry |
sup() |
sup |
inf() |
inf |
dmax() |
dmax |
dmin() |
dmin |
skewnessType() |
skewnessType |
kurtosisType() |
kurtosisType |
Statistical Methods |
Link |
pdf(x1, ..., log = FALSE, simplify = TRUE) |
pdf |
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
cdf |
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
quantile.Distribution |
rand(n, simplify = TRUE) |
rand |
mean() |
mean.Distribution |
variance() |
variance |
stdev() |
stdev |
prec() |
prec |
cor() |
cor |
skewness() |
skewness |
kurtosis(excess = TRUE) |
kurtosis |
entropy(base = 2) |
entropy |
mgf(t) |
mgf |
cf(t) |
cf |
pgf(z) |
pgf |
median() |
median.Distribution |
iqr() |
iqr |
Parameter Methods |
Link |
parameters(id) |
parameters |
getParameterValue(id, error = "warn") |
getParameterValue |
setParameterValue(..., lst = NULL, error = "warn") |
setParameterValue |
Validation Methods |
Link |
liesInSupport(x, all = TRUE, bound = FALSE) |
liesInSupport |
liesInType(x, all = TRUE, bound = FALSE) |
liesInType |
Representation Methods |
Link |
strprint() |
strprint |
print() |
print |
summary(full = T) |
summary.Distribution |
plot() |
Coming Soon. |
qqplot() |
Coming Soon. |
The Hypergeometric distribution parameterised with population size,
The distribution is supported on
mgf
and cf
are
omitted as no closed form analytic expression could be found, decorate with CoreStatistics
for numerical results.
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
listDistributions
for all available distributions. CoreStatistics
for numerical results.
# NOT RUN {
Hypergeometric$new(size = 10, successes = 7, draws = 5)
Hypergeometric$new(size = 10, failures = 3, draws = 5)
# Default is size = 50, successes = 5, draws = 10
x = Hypergeometric$new(verbose = TRUE)
# Update parameters
# When any parameter is updated, all others are too!
x$setParameterValue(failures = 10)
x$parameters()
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab