Mathematical and statistical functions for the Bernoulli distribution, which is commonly used to model a two-outcome scenario.
Returns an R6 object inheriting from class SDistribution.
Bernoulli$new(prob = 0.5, qprob = NULL, decorators = NULL, verbose = FALSE)
Argument | Type | Details |
prob |
numeric | probability of success. |
qprob |
numeric | probability of failure. |
decorators
Decorator
decorators to add functionality. See details.
The Bernoulli distribution is parameterised with prob
or qprob
as a number between 0 and 1. These are related via, qprob
is given then prob is ignored.
Variable | Return |
name |
Name of distribution. |
short_name |
Id of distribution. |
description |
Brief description of distribution. |
Accessor Methods | Link |
decorators() |
decorators |
traits() |
traits |
valueSupport() |
valueSupport |
variateForm() |
variateForm |
type() |
type |
properties() |
properties |
support() |
support |
symmetry() |
symmetry |
sup() |
sup |
inf() |
inf |
dmax() |
dmax |
dmin() |
dmin |
skewnessType() |
skewnessType |
kurtosisType() |
kurtosisType |
Statistical Methods
Link
pdf(x1, ..., log = FALSE, simplify = TRUE)
pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE)
cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE)
quantile.Distribution
rand(n, simplify = TRUE)
rand
mean()
mean.Distribution
variance()
variance
stdev()
stdev
prec()
prec
cor()
cor
skewness()
skewness
kurtosis(excess = TRUE)
kurtosis
entropy(base = 2)
entropy
mgf(t)
mgf
cf(t)
cf
pgf(z)
pgf
median()
median.Distribution
iqr()
iqr
mode(which = "all")
mode
Parameter Methods
Link
parameters(id)
parameters
getParameterValue(id, error = "warn")
getParameterValue
setParameterValue(..., lst = NULL, error = "warn")
setParameterValue
Validation Methods
Link
liesInSupport(x, all = TRUE, bound = FALSE)
liesInSupport
liesInType(x, all = TRUE, bound = FALSE)
liesInType
Representation Methods
Link
strprint(n = 2)
strprint
print(n = 2)
print
summary(full = T)
summary.Distribution
The Bernoulli distribution parameterised with probability of success,
The distribution is supported on
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
listDistributions
for all available distributions. Binomial
for a generalisation of the Bernoulli distribution.
# NOT RUN {
# Can be parameterised with probability of success or failure
Bernoulli$new(prob = 0.2)
Bernoulli$new(qprob = 0.3)
x = Bernoulli$new(verbose = TRUE) # Default is with prob = 0.5
# Update parameters
# When any parameter is updated, all others are too!
x$setParameterValue(qprob = 0.3)
x$parameters()
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab