
Last chance! 50% off unlimited learning
Sale ends in
Mathematical and statistical functions for the Exponential distribution, which is commonly used to model inter-arrival times in a Poisson process and has the memoryless property.
Returns an R6 object inheriting from class SDistribution.
Exponential$new(rate = NULL, scale = NULL, decorators = NULL, verbose = FALSE)
Argument | Type | Details |
rate |
numeric | arrival rate. |
scale |
numeric | scale parameter. |
decorators
Decorator
decorators to add functionality. See details.
The Exponential distribution is parameterised with rate
or scale
as positive numerics. These are related via, scale
is given then rate
is ignored.
Variable | Return |
name |
Name of distribution. |
short_name |
Id of distribution. |
description |
Brief description of distribution. |
Accessor Methods | Link |
decorators() |
decorators |
traits() |
traits |
valueSupport() |
valueSupport |
variateForm() |
variateForm |
type() |
type |
properties() |
properties |
support() |
support |
symmetry() |
symmetry |
sup() |
sup |
inf() |
inf |
dmax() |
dmax |
dmin() |
dmin |
skewnessType() |
skewnessType |
kurtosisType() |
kurtosisType |
Statistical Methods
Link
pdf(x1, ..., log = FALSE, simplify = TRUE)
pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE)
cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE)
quantile.Distribution
rand(n, simplify = TRUE)
rand
mean()
mean.Distribution
variance()
variance
stdev()
stdev
prec()
prec
cor()
cor
skewness()
skewness
kurtosis(excess = TRUE)
kurtosis
entropy(base = 2)
entropy
mgf(t)
mgf
cf(t)
cf
pgf(z)
pgf
median()
median.Distribution
iqr()
iqr
mode(which = "all")
mode
Parameter Methods
Link
parameters(id)
parameters
getParameterValue(id, error = "warn")
getParameterValue
setParameterValue(..., lst = NULL, error = "warn")
setParameterValue
Validation Methods
Link
liesInSupport(x, all = TRUE, bound = FALSE)
liesInSupport
liesInType(x, all = TRUE, bound = FALSE)
liesInType
Representation Methods
Link
strprint(n = 2)
strprint
print(n = 2)
print
summary(full = T)
summary.Distribution
The Exponential distribution parameterised with rate,
The distribution is supported on the Positive Reals.
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
listDistributions
for all available distributions.
# NOT RUN {
Exponential$new(rate = 4)
Exponential$new(scale = 3)
x = Exponential$new(verbose = TRUE) # Default is rate = 1
# Update parameters
# When any parameter is updated, all others are too!
x$setParameterValue(scale = 2)
x$parameters()
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab