Statistical Methods
pdf(x1, ..., log = FALSE, simplify = TRUE) pdf cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdfquantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution rand(n, simplify = TRUE) rand mean() mean.Distribution variance() variance stdev() stdev prec() prec cor() cor skewness() skewness kurtosis(excess = TRUE) kurtosis entropy(base = 2) entropy mgf(t) mgf cf(t) cf pgf(z) pgf median() median.Distribution iqr() iqr mode(which = "all") mode
Parameter Methods
parameters(id) parameters getParameterValue(id, error = "warn") getParameterValue setParameterValue(..., lst = NULL, error = "warn") setParameterValue
Validation Methods
liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport liesInType(x, all = TRUE, bound = FALSE) liesInType
Representation Methods
strprint(n = 2) strprint print(n = 2) print summary(full = T) summary.Distribution # NOT RUN {
# Different parameterisations
MultivariateNormal$new(mean = c(0,0,0), cov = matrix(c(3,-1,-1,-1,1,0,-1,0,1), byrow=TRUE,nrow=3))
MultivariateNormal$new(mean = c(0,0,0), cov = c(3,-1,-1,-1,1,0,-1,0,1)) # Equivalently
MultivariateNormal$new(mean = c(0,0,0), prec = c(3,-1,-1,-1,1,0,-1,0,1))
# Default is bivariate standard normal
x <- MultivariateNormal$new()
# Update parameters
x$setParameterValue(mean = c(1, 2))
# When any parameter is updated, all others are too!
x$setParameterValue(prec = c(1,0,0,1))
x$parameters()
# d/p/q/r
# Note the difference from R stats
x$pdf(1, 2)
# This allows vectorisation:
x$pdf(1:3, 2:4)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab