Mathematical and statistical functions for the Noncentral F distribution, which is commonly used in ANOVA testing and is the ratio of scaled Chi-Squared distributions.
Returns an R6 object inheriting from class SDistribution.
FDistributionNoncentral$new(df1 = 1, df2 = 1, location = 0, decorators = NULL, verbose = FALSE)
Argument | Type | Details |
df1, df2 |
numeric | degrees of freedom. |
location |
numeric | location (ncp in rstats). |
decorators
Decorator
decorators to add functionality. See details.
The Noncentral F distribution is parameterised with df1
and df2
as positive numerics, location
as non-negative numeric.
Variable | Return |
name |
Name of distribution. |
short_name |
Id of distribution. |
description |
Brief description of distribution. |
Accessor Methods | Link |
decorators |
decorators |
traits |
traits |
valueSupport |
valueSupport |
variateForm |
variateForm |
type |
type |
properties |
properties |
support |
support |
symmetry |
symmetry |
sup |
sup |
inf |
inf |
dmax |
dmax |
dmin |
dmin |
skewnessType |
skewnessType |
kurtosisType |
kurtosisType |
Statistical Methods
Link
pdf(x1, ..., log = FALSE, simplify = TRUE)
pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE)
cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE)
quantile.Distribution
rand(n, simplify = TRUE)
rand
mean()
mean.Distribution
variance()
variance
stdev()
stdev
prec()
prec
cor()
cor
skewness()
skewness
kurtosis(excess = TRUE)
kurtosis
entropy(base = 2)
entropy
mgf(t)
mgf
cf(t)
cf
pgf(z)
pgf
median()
median.Distribution
iqr()
iqr
mode(which = "all")
mode
Parameter Methods
Link
parameters(id)
parameters
getParameterValue(id, error = "warn")
getParameterValue
setParameterValue(..., lst = NULL, error = "warn")
setParameterValue
Validation Methods
Link
liesInSupport(x, all = TRUE, bound = FALSE)
liesInSupport
liesInType(x, all = TRUE, bound = FALSE)
liesInType
Representation Methods
Link
strprint(n = 2)
strprint
print(n = 2)
print
summary(full = T)
summary.Distribution
The Noncentral F distribution parameterised with two degrees of freedom parameters,
The distribution is supported on the Positive Reals.
skewness
, kurtosis
, entropy
, mode
, mgf
and cf
are
omitted as no closed form analytic expression could be found, decorate with CoreStatistics
for numerical results.
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
listDistributions
for all available distributions. Normal
, ChiSquared
and FDistribution
for the Normal, Chi-Squared and central F distributions. CoreStatistics
for numerical results.
# NOT RUN {
x <- FDistributionNoncentral$new(df1 = 1, df2 = 3, location = 2)
# Update parameters
x$setParameterValue(df2 = 10)
x$parameters()
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab