Mathematical and statistical functions for the Weibull distribution, which is commonly used in survival analysis as it satisfies both PH and AFT requirements.
Returns an R6 object inheriting from class SDistribution.
distr6::Distribution
-> distr6::SDistribution
-> Weibull
name
Full name of distribution.
short_name
Short name of distribution for printing.
description
Brief description of the distribution.
packages
Packages required to be installed in order to construct the distribution.
new()
Creates a new instance of this R6 class.
Weibull$new(shape = 1, scale = 1, altscale = NULL, decorators = NULL)
shape
(numeric(1))
Shape parameter, defined on the positive Reals.
scale
(numeric(1))
Scale parameter, defined on the positive Reals.
altscale
(numeric(1))
Alternative scale parameter, if given then scale
is ignored.
altscale = scale^-shape
.
decorators
(character())
Decorators to add to the distribution during construction.
mean()
The arithmetic mean of a (discrete) probability distribution X is the expectation
Weibull$mean(...)
...
Unused.
mode()
The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).
Weibull$mode(which = "all")
which
(character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all"
returns all modes, otherwise specifies
which mode to return.
median()
Returns the median of the distribution. If an analytical expression is available
returns distribution median, otherwise if symmetric returns self$mean
, otherwise
returns self$quantile(0.5)
.
Weibull$median()
variance()
The variance of a distribution is defined by the formula
Weibull$variance(...)
...
Unused.
skewness()
The skewness of a distribution is defined by the third standardised moment,
Weibull$skewness(...)
...
Unused.
kurtosis()
The kurtosis of a distribution is defined by the fourth standardised moment,
Weibull$kurtosis(excess = TRUE, ...)
excess
(logical(1))
If TRUE
(default) excess kurtosis returned.
...
Unused.
entropy()
The entropy of a (discrete) distribution is defined by
Weibull$entropy(base = 2, ...)
base
(integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)
...
Unused.
pgf()
The probability generating function is defined by
Weibull$pgf(z, ...)
z
(integer(1))
z integer to evaluate probability generating function at.
...
Unused.
setParameterValue()
Sets the value(s) of the given parameter(s).
Weibull$setParameterValue(..., lst = NULL, error = "warn")
...
ANY
Named arguments of parameters to set values for. See examples.
lst
(list(1))
Alternative argument for passing parameters. List names should be parameter names and list values
are the new values to set.
error
(character(1))
If "warn"
then returns a warning on error, otherwise breaks if "stop"
.
clone()
The objects of this class are cloneable with this method.
Weibull$clone(deep = FALSE)
deep
Whether to make a deep clone.
The Weibull distribution parameterised with shape,
The distribution is supported on the Positive Reals.
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
Other continuous distributions:
Arcsine
,
BetaNoncentral
,
Beta
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Dirichlet
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Gompertz
,
Gumbel
,
InverseGamma
,
Laplace
,
Logistic
,
Loglogistic
,
Lognormal
,
MultivariateNormal
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
ShiftedLoglogistic
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Wald
Other univariate distributions:
Arcsine
,
Bernoulli
,
BetaNoncentral
,
Beta
,
Binomial
,
Categorical
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Degenerate
,
DiscreteUniform
,
Empirical
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Geometric
,
Gompertz
,
Gumbel
,
Hypergeometric
,
InverseGamma
,
Laplace
,
Logarithmic
,
Logistic
,
Loglogistic
,
Lognormal
,
NegativeBinomial
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
ShiftedLoglogistic
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Wald
,
WeightedDiscrete