Usage
.inArgs(arg, fct)
.isUnitMatrix(m)
.csimpsum(fx)
.validTrafo(trafo, dimension)
.CvMMDCovariance(L2Fam, param, mu = distribution(L2Fam), expon=3,
withplot = FALSE, withpreIC = FALSE,
N = getdistrOption("DefaultNrGridPoints")+1, ...)
.show.with.sd(est, s)
.getLogDeriv(distr)Arguments
arg
a formal argument as character
est
an estimator; usually a vector
trafo
an object of class MatrixorFunction
L2Fam
an object of class L2ParamFamily --- for
which we want to determine the IC resp. the as. [co]variance of the corresponding
Minimum CvM estimator
param
an object of class ParamFamParameter, the parameter value
at which we want to determine the IC resp. the as. [co]variance of the corresponding
Minimum CvM estimator
mu
an object of class UnivariateDistribution: integration
measure (resp. distribution) for CvM distance
expon
a numeric: number to exponentiate
getdistrOption("TruncQuantile")
to get upper and lower
$\mu$- resp. $P_\theta$-quantiles
for the gridpoints (see below)
withplot
logical: shall we plot corresponding ICs?
withpreIC
logical: shall we return a list with components preIC
and var or just var; here var is the corresponding
asymptotic variance and preIC the corresponding
EuclRandVa
N
a numeric: the number of gridpoints for constructing the
$\mu$- resp. $P_\theta$-``primitive''
function
fx
a vector of function evaluations multiplied by the gridwidth
distr
an object of class AbscontDistribution
...
further argument to be passed through --- so
.CvMMDCovariance can digest more arguments