Usage
.inArgs(arg, fct)
.isUnitMatrix(m)
.csimpsum(fx)
.validTrafo(trafo, dimension)
.CvMMDCovariance(L2Fam, param, mu = distribution(L2Fam),
withplot = FALSE, withpreIC = FALSE,
N = getdistrOption("DefaultNrGridPoints")+1,
rel.tol=.Machine$double.eps^0.3,
TruncQuantile = getdistrOption("TruncQuantile"),
IQR.fac = 15, ...)
.show.with.sd(est, s)
.getLogDeriv(distr,
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = getdistrExOption("IQR.fac"))
Arguments
arg
a formal argument as character
est
an estimator; usually a vector
trafo
an object of class MatrixorFunction
L2Fam
an object of class L2ParamFamily
--- for
which we want to determine the IC resp. the as. [co]variance of the corresponding
Minimum CvM estimator
param
an object of class ParamFamParameter
, the parameter value
at which we want to determine the IC resp. the as. [co]variance of the corresponding
Minimum CvM estimator
mu
an object of class UnivariateDistribution
: integration
measure (resp. distribution) for CvM distance
rel.tol
relative tolerance for distrExIntegrate
.
TruncQuantile
quantile for quantile based integration range.
lowerTruncQuantile
lower quantile for quantile based integration range.
upperTruncQuantile
upper quantile for quantile based integration range.
IQR.fac
factor for scale based integration range (i.e.;
median of the distribution $\pm$IQR.fac
$\times$IQR).
withplot
logical: shall we plot corresponding ICs?
withpreIC
logical: shall we return a list with components preIC
and var
or just var
; here var
is the corresponding
asymptotic variance and preIC
the corresponding
EuclRandVa
N
a numeric: the number of gridpoints for constructing the
$\mu$- resp. $P_\theta$-``primitive''
function
fx
a vector of function evaluations multiplied by the gridwidth
distr
an object of class AbscontDistribution
...
further argument to be passed through --- so
.CvMMDCovariance
can digest more arguments