# Generating some data
dat <- model_fam_data(fam_name = "LOGNO")
# Estimating the model
library("gamlss")
model <- gamlss(LOGNO ~ ps(norm2) + binomial1,
~ ps(norm2) + binomial1,
data = dat, family = "LOGNO")
# Get newdata by either specifying an own data.frame, or using set_mean()
# for obtaining mean vals of explanatory variables
ndata_user <- dat[1:5, c("norm2", "binomial1")]
ndata_auto <- set_mean(model_data(model))
# Influence graphs
plot_moments(model, int_var = "norm2", pred_data = ndata_user) # cont. var
plot_moments(model, int_var = "binomial1", pred_data = ndata_user) # discrete var
plot_moments(model, int_var = "norm2", pred_data = ndata_auto) # with new ndata
# If pred_data argument is omitted plot_moments uses mean explanatory
# variables for prediction (using set_mean)
plot_moments(model, int_var = "norm2")
# Rug Plot
plot_moments(model, int_var = "norm2", rug = TRUE)
# Different colour palette
plot_moments(model, int_var = "binomial1", palette = "Dark2")
# Using an external function
ineq <- function(par) {
2 * pnorm((par[["sigma"]] / 2) * sqrt(2)) - 1
}
plot_moments(model, int_var = "norm2", pred_data = ndata_user, ex_fun = "ineq")
Run the code above in your browser using DataLab