A distribution with constant density on an interval.
We recommend reading this documentation on
https://pkg.mitchelloharawild.com/distributional/, where the math
will render nicely.
In the following, let \(X\) be a Poisson random variable with parameter
lambda
= \(\lambda\).
Support: \([a,b]\)
Mean: \(\frac{1}{2}(a+b)\)
Variance: \(\frac{1}{12}(b-a)^2\)
Probability mass function (p.m.f):
$$
f(x) = \frac{1}{b-a} for x \in [a,b]
$$
$$
f(x) = 0 otherwise
$$
Cumulative distribution function (c.d.f):
$$
F(x) = 0 for x < a
$$
$$
F(x) = \frac{x - a}{b-a} for x \in [a,b]
$$
$$
F(x) = 1 for x > b
$$
Moment generating function (m.g.f):
$$
E(e^{tX}) = \frac{e^{tb} - e^{ta}}{t(b-a)} for t \neq 0
$$
$$
E(e^{tX}) = 1 for t = 0
$$