Learn R Programming

distributional (version 0.2.1)

dist_weibull: The Weibull distribution

Description

stable

Usage

dist_weibull(shape, scale)

Arguments

shape

shape and scale parameters, the latter defaulting to 1.

scale

shape and scale parameters, the latter defaulting to 1.

Details

Generalization of the gamma distribution. Often used in survival and time-to-event analyses.

We recommend reading this documentation on https://pkg.mitchelloharawild.com/distributional/, where the math will render nicely.

In the following, let \(X\) be a Weibull random variable with success probability p = \(p\).

Support: \(R^+\) and zero.

Mean: \(\lambda \Gamma(1+1/k)\), where \(\Gamma\) is the gamma function.

Variance: \(\lambda [ \Gamma (1 + \frac{2}{k} ) - (\Gamma(1+ \frac{1}{k}))^2 ]\)

Probability density function (p.d.f):

$$ f(x) = \frac{k}{\lambda}(\frac{x}{\lambda})^{k-1}e^{-(x/\lambda)^k}, x \ge 0 $$

Cumulative distribution function (c.d.f):

$$F(x) = 1 - e^{-(x/\lambda)^k}, x \ge 0$$

Moment generating function (m.g.f):

$$\sum_{n=0}^\infty \frac{t^n\lambda^n}{n!} \Gamma(1+n/k), k \ge 1$$

See Also

stats::Weibull

Examples

Run this code
# NOT RUN {
dist <- dist_weibull(shape = c(0.5, 1, 1.5, 5), scale = rep(1, 4))

dist
mean(dist)
variance(dist)
skewness(dist)
kurtosis(dist)

generate(dist, 10)

density(dist, 2)
density(dist, 2, log = TRUE)

cdf(dist, 4)

quantile(dist, 0.7)

# }

Run the code above in your browser using DataLab