Generalization of the gamma distribution. Often used in survival and
time-to-event analyses.
We recommend reading this documentation on
https://pkg.mitchelloharawild.com/distributional/, where the math
will render nicely.
In the following, let \(X\) be a Weibull random variable with
success probability p
= \(p\).
Support: \(R^+\) and zero.
Mean: \(\lambda \Gamma(1+1/k)\), where \(\Gamma\) is
the gamma function.
Variance: \(\lambda [ \Gamma (1 + \frac{2}{k} ) - (\Gamma(1+ \frac{1}{k}))^2 ]\)
Probability density function (p.d.f):
$$
f(x) = \frac{k}{\lambda}(\frac{x}{\lambda})^{k-1}e^{-(x/\lambda)^k}, x \ge 0
$$
Cumulative distribution function (c.d.f):
$$F(x) = 1 - e^{-(x/\lambda)^k}, x \ge 0$$
Moment generating function (m.g.f):
$$\sum_{n=0}^\infty \frac{t^n\lambda^n}{n!} \Gamma(1+n/k), k \ge 1$$